

Getting Started with the TWS Java API
March 2011
Supports TWS API Release 9.64

© 2011 Interactive Brokers LLC. All rights reserved.

Sun, Sun Microsystems, the Sun Logo and Java are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries. Excel,
Windows and Visual Basic (VB) are trademarks or registered trademarks of the
Microsoft Corporation in the United States and/or in other countries.

Any symbols displayed within these pages are for illustrative purposes only, and are not
intended to portray any recommendation.

Contents

1 Introduction ...7

How to Use this Book ...8

Organization ..8

Part 1: Introducing the TWS Java API ..8

Part 2: Preparing to Use the TWS Java API ...8

Part 3: Getting to Know the Java Test Client ...9

Part 4: Java Samples ...9

Part 5: Where to Go from Here..9

Footnotes and References ..9

Icons .. 10

Document Conventions.. 11

2 TWS and the Java API ..13

Chapter 1 - What is Trader Workstation?... 14

What Can You Do with TWS? .. 15

A Quick Look at TWS... 15

The TWS Quote Monitor ... 15

The Order Ticket ... 15

Real-Time Account Monitoring ... 16

Chapter 2 - Why Use the TWS Java API?... 17

TWS and the API .. 17

Available API Technologies ... 18

An Example ... 18

3 Preparing to Use the Java API ..21

Chapter 3 - Download the Java JDK and IDE.. 22

Chapter 4- Download the API Software ... 23

Chapter 5 - Connect to the Java Test Client... 26

4 Market Data..31

Chapter 6 - Connect the Java Test Client to TWS ... 32
Getting Started with the TWS Java API for Advisors i

Contents
Java Test Client Basic Framework ... 32

SampleFrame.java .. 33

What Happens When I Click the Connect Button? .. 34

Disconnecting from a Running Instance of TWS .. 37

Chapter 7: Requesting and Canceling Market Data ... 38

What Happens When I Click the Req Mkt Data Button?..................................... 39

The Sample Dialog .. 40

The reqMktData() Method... 41

EWrapper Methods that Return Market Data.. 44

Getting a Snapshot of Market Data.. 45

Canceling Market Data... 45

Chapter 8 - Requesting and Canceling Market Depth .. 46

What Happens When I Click the Req Mkt Depth Button?................................... 47

The reqMktDepth() Method... 47

The updateMktDepth() and updateMktDepthL2() Methods......................... 48

Canceling Market Depth... 48

Chapter 9 - Requesting and Canceling Historical Data ... 49

What Happens When I Click the Historical Data Button? 50

The reqHistoricalData() Method ... 50

The historicalData() Method.. 51

Canceling Historical Data ... 51

Chapter 10 - Requesting and Canceling Real Time Bars... 52

What Happens When I Click the Req Real Time Bars Button? 53

The reqRealTimeBars() Method ... 53

The realtimeBar() Method... 54

Canceling Real Time Bars... 54

Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions 55

What Happens When I Click the Market Scanner Button?.................................. 56

The reqScannerParameters() and reqScannerSubscription() Methods 57

The scannerData() Method ... 57

The scannerDataEnd() Method .. 57

Cancel a Market Scanner Subscription ... 58

Chapter 12: Requesting Contract Data.. 59

What Happens When I Click the Req Contract Data Button? 59

The reqContractDetails() Method ... 60

The contractDetails() Method .. 60
Getting Started with the TWS Java API for Advisors ii

Contents
5 Orders and Executions..61

Chapter 13: Placing and Canceling an Order .. 62

What Happens When I Place an Order? .. 63

The placeOrder() Method.. 65

The orderStatus() Method .. 66

Canceling an Order ... 66

Modifying an Order ... 66

Requesting "What-If" Data before You Place an Order...................................... 67

Chapter 14: Exercising Options.. 68

What Happens When I Click the Exercise Options Button? 68

The exerciseOptions() Method... 70

Chapter 15: Extended Order Attributes ... 71

What Happens When I Click the Extended Button? .. 71

Chapter 16: Requesting Open Orders ... 73

Running Multiple API Sessions .. 73

The Difference between the Three Request Open Orders Buttons....................... 74

What Happens When I Click the Req Open Orders Button?................................ 74

The reqOpenOrders() Method.. 74

What Happens When I Click the Req All Open Orders Button? 75

The reqAllOpenOrders() Method .. 75

What Happens When I Click the Req Auto Open Orders Button? 76

The reqAutoOpenOrders() Method ... 76

Chapter 17 Requesting Executions ... 77

What Happens When I Click the Req Executions Button? 77

The reqExecutions() Method ... 78

The execDetails() Method ... 78

6 Additional Tasks ...79

Chapter 18 - Requesting the Current Time .. 80

What Happens When I Click the Req Current Time Button?............................... 80

Chapter 19: Subscribing to News Bulletins .. 81

What Happens When I Click the Req News Bulletins Button? 81

The reqNewsBulletins() method... 82

The updateNewsBulletin() Method ... 82

Canceling News Bulletins ... 83

Chapter 20: View and Change the Server Logging Level.. 84
Getting Started with the TWS Java API for Advisors iii

Contents
What Happens When I Click the Server Logging Button? 84

The setServerLogLevel() Method ... 85

7 Sample Applications for the Java API 87

Chapter 21 - Downloading and Preparing the Sample Code.................................... 88

Download the Samples .. 88

What’s In the Zipped Sample File? .. 88

Setting Up the Project in NetBeans.. 89

A Quick Look at the New Project.. 91

Chapter 22 - Example 1: Requesting Market Data .. 92

Run Example 1 ... 92

What Happens When You Run Example 1? ... 93

Looking at Example1.java .. 94

Connecting to TWS ... 96

Creating a Contract... 97

Getting a Snapshot of Market Data.. 99

The while Loop ... 99

Getting the Last Price .. 100

Disconnecting from TWS.. 101

The build.xml Build File.. 101

Chapter 23 - Example 2: Automating Option Orders ... 102

Run Example 2 ... 102

What Happens When You Run Example 2? ... 103

Looking at Example2.java .. 105

Connecting to TWS ... 109

Retrieving the Underlying Data ... 110

Creating a Contract ... 112

Requesting Market Data ... 113

The while Loop.. 114

Getting the Last Price, Option Implied Volatility and Historical Volatility 115

Retrieving Options Contracts .. 116

contractDetails() and contractDetailsEnd().. 117

Placing the Straddle Order ... 119

Disconnecting from TWS.. 119

The build.xml Build File.. 120
Getting Started with the TWS Java API for Advisors iv

Contents
8 Where to Go from Here... 121

Chapter 24 - Linking to TWS using the TWS Java API.. 122

Chapter 25 - Additional Resources ... 125

Help with Java Programming .. 125

Help with the Java API... 125

The API Reference Guide ... 125

The API Beta and API Production Release Notes..................................... 125

The TWS API Webinars... 126

API Customer Forums .. 126

IB Customer Service .. 126

IB Features Poll... 126

A Appendix A - Extended Order Attributes................................. 127

B Appendix B - Account Page Values ... 131
Getting Started with the TWS Java API for Advisors v

Contents
Getting Started with the TWS Java API for Advisors vi

1
Introduction

You might be looking at this book for any number of reasons, including:

• You love IB's TWS, and are interested in seeing how using its API can enhance your
trading.

• You use another online trading application that doesn't provide the functionality of TWS,
and you want to find out more about TWS and its API capabilities.

• You never suspected that there was a link between the worlds of trading/financial
management and computer programming, and the hint of that possibility has piqued
your interest.

Or more likely you have a reason of your own. Regardless of your original motivation, you now
hold in your hands a unique and potentially priceless tome of information. Well, maybe that's
a tiny bit of an exaggeration. However, the information in this book, which will teach you how
to access and manage the robust functionality of IB's Trader Workstation through our TWS
Java API, could open up a whole new world of possibilities and completely change the way you
manage your trading environment. Keep reading to find out how easy it can be to build your
own customized trading application.

If you are a Financial Advisor who trades for and allocates shares
among multiple client accounts and would like more information
about using the Java API, see the Getting Started with the TWS
Java API for Advisors Guide.
Getting Started with the TWS Java API 7

Introduction
How to Use this Book
How to Use this Book
Before you get started, you should read this section to learn how this book is organized, and
see which graphical conventions are used throughout.

Our main goal is to give active traders and investors the tools they need to successfully
implement a custom trading application (i.e. a trading system that you can customize to meet
your specific needs), and that doesn't have to be monitored every second of the day. If you're
not a trader or investor you probably won't have much use for this book, but please, feel free
to read on anyway!

Throughout this book, we use the acronym “TWS” in place of “Trader
Workstation.” So when you see “TWS” anywhere, you’ll know we’re
talking about Trader Workstation.

Before you read any further, we need to tell you that this book
focuses on the TWS side of the Java API - we don't really help you to
learn Java. If you aren't a fairly proficient Java programmer, or at
least a very confident and bold beginner, this may be more than you

want to take on. We suggest you start with a beginner's Java programming
book, and come back to us when you're comfortable with Java.

Organization

We’ve divided this book into five major sections, each of which comprises a number of smaller
subsections, and each of those have even smaller groupings of paragraphs and figures…well,
you get the picture. Here’s how we’ve broken things down:

Part 1: Introducing the TWS Java API

The chapters in this section help you answer those important questions you need to ask before
you can proceed - questions such as "What can TWS do for me?" and "Why would I use an
API?" and "If I WERE to use an API, what does the Java platform have to offer me?" and even
"What other API choices do I have?"

If you already know you want to learn about the TWS API, just skip on ahead.

Part 2: Preparing to Use the TWS Java API

Part 2 walks you through the different things you'll need to do before your API application can
effectively communicate with TWS. We'll help you download and install the API software,
configure TWS and get the Java Test Client sample application up and running. A lot of this
information is very important when you first get started, but once it's done, well, it's done,
and you most likely won't need much from this section once you've completed it.
Getting Started with the TWS Java API 8

Introduction
How to Use this Book
Part 3: Getting to Know the Java Test Client

Part 3 gets you working with the Java Test Client: learning how to request, receive and cancel
market data, market depth, historical data, how to place an order, view execution reports, and
monitor your account activity. We'll tell you exactly what methods you need to use to send
info to TWS, and just what TWS will send you back. We've already documented the method
parameters, descriptions and valid values in the API Reference Guide, so instead of duplicating
efforts and filling this book up with those important reference tidbits, we provide targeted links
to different sections of the users' guide as we need them.

Part 4: Java Samples

OK, here we’re leaving the world of the known and venturing into new territory (which as
everyone knows is actually the most exciting place to be). Now that you’re familiar with our
stuff and how it works, it’s time to leave the nest and go out on your own. This section helps
you to get started using our TWS Java API to create an application that does what YOU want
by introducing you to two custom-written programs. Of course to protect your million-dollar
inspiration, you’ll have to implement your ideas on your own.

Part 5: Where to Go from Here

After filling your head with boatfuls of API knowledge, we wouldn't dream of sending you off
empty-handed! Part 5 includes some additional information about linking to TWS using our
Java API, then tells you how to keep abreast of new API releases (which of course means new
features you can incorporate into your trading plan), how to navigate the Interactive Brokers
website to find support and information, and what resources we recommend to help you
answer questions outside the realm of IB support, questions such as "Why isn't my Java JDK
working?"

Footnotes and References
1Any symbols displayed are for illustrative purposes only and are not intended to portray a
recommendation.
Getting Started with the TWS Java API 9

Introduction
How to Use this Book
Icons

TWS-Related

When you see this guy, you know that there is
something that relates specifically to TWS: a new
feature to watch for, or maybe something you’re
familiar with in TWS and are looking for in the API.

Java Tip

The Java tips are things we noted and think you might
find useful. They don't necessarily relate only to TWS.
We don't include too many of these, but when you see
it you should check it out - it will probably save you
some time.

Important!

This shows you where there is a particularly useful or
important point being made.

Take a Peek!

You may want to take a peek, but it isn’t the end of the
world if you don’t.

Go Outside!

This icon denotes references outside of this book that
we think may help you with the current topic, including
links to the internet or IB site, or a book title.
Getting Started with the TWS Java API 10

Introduction
How to Use this Book
Document Conventions

Here’s a list of document conventions used in the text throughout this book.

In addition, Java code snippets appear in the following format:

Convention Description Examples

Bold Indicates:

• menus

• screens

• windows

• dialogs

• buttons

• tabs

• keys you press

• names of classes
and methods

On the Tickers page,
select a row by clicking the
row number in the far left
column…

Press Ctrl+C to copy…

Italics Indicates:

• commands in a
menu

• objects on the
screen, such as text
fields, check boxes,
and drop-down lists

To access the users’ guide,
under the Software
menu, select Trader
Workstation, then click
Users’ Guide.

EClientSocket constructor

EClientSocket m_client = new EClientSocket(this);
Getting Started with the TWS Java API 11

Introduction
How to Use this Book
Getting Started with the TWS Java API 12

2
TWS and the Java API

The best place to start is by getting an idea of what Trader Workstation (TWS), is all about. In
this section, first we'll describe TWS and some of its major features. Then we'll explain how
the API can be used to enhance and customize your trading environment. Finally, we'll give
you a summary of some of the things the Java API can do for you!

Here's what you'll find in this section:

• Chapter 1 - What is Trader Workstation?

• Chapter 2 - Why Use the TWS Java API?
Getting Started with the TWS Java API 13

TWS and the Java API
Chapter 1 - What is Trader Workstation?
Chapter 1 - What is Trader Workstation?
Interactive Brokers' Trader Workstation, or TWS, is an online trading platform that lets you
trade and manage orders for all types of financial products (including stocks, bonds, options,
futures and Forex) on markets all over the world - all from a single spreadsheet-like screen.

To get a little bit of a feel for TWS, go to the IB website and try the TWS
demo application. Its functionality is slightly limited and it only supports a
small number of symbols, but you'll definitely get the idea. Once you
have an approved, funded account you'll also be able to use PaperTrader,

our simulated trading tool, with paper-money funding in the amount of
$100,000, which you can replenish at any time through TWS Account
Management.
Getting Started with the TWS Java API 14

TWS and the Java API
Chapter 1 - What is Trader Workstation?
What Can You Do with TWS?

So, what can you do with TWS? For starters, you can:

• Send and manage orders for all sorts of products (all from the same screen!);

• Monitor the market through Level II, NYSE Deep Book and IB's Market Depth;

• Keep a close eye on all aspects of your account and executions;

• Use Technical, Fundamental and Price/Risk analytics tools to spot trends and analyze
market movement;

• Completely customize your trading environment through your choice of modules,
features, tools, fonts and colors, and user-designed workspaces.

Basically, almost anything you can think of TWS can do - or will be able to do soon. We are
continually adding new features, and use the latest technology to make things faster, easier
and more efficient. As a matter of fact, it was this faith in technology's ability to improve a
trader's success in the markets (held by IB's founder and CEO Thomas Peterffy) that launched
this successful endeavor in the first place. Since the introduction of TWS in 1995, IB has
nurtured this relationship between technology and trading almost to the point of obsession!

A Quick Look at TWS

This section gives you a brief overview of the most important parts of TWS.

The TWS Quote Monitor

First is the basic TWS Quote Monitor. It's laid out like a spreadsheet with rows and columns.
To add tickers to a page, you just click in the Underlying column, type in an underlying symbol
and press Enter, and walk through the steps to select a product type and define the contract.
Voila! You now have a live market data line on your trading window. It might be for a stock,
option, futures or bond contract. You can add as many of these as you want, and you can
create another window, or trading page, and put some more on that page. You can have any
and all product types on a single page, maybe sorted by exchange, or you can have a page for
stocks, a page for options, etc. Once you get some market data lines on a trading page, you're
ready to send an order.

The Order Ticket

What? An order ticket? Sure, we have an order ticket if that's what you really want. But we
thought you might find it easier to simply click on the bid or ask price and have us create a
complete order line instantly, right in front of your eyes! Look it over, and if it's what you want
click a button to transmit the order. You can easily change any of the order parameters right
on the order line. Then just click the green Transmit guy to transmit your order! It's fast and
it's easy, and you can even customize this minimal two-click procedure (by creating hotkeys
and setting order defaults for example) so that you're creating and transmitting orders with
just ONE click of the mouse.
Getting Started with the TWS Java API 15

TWS and the Java API
Chapter 1 - What is Trader Workstation?
Real-Time Account Monitoring

TWS also provides a host of real-time account and execution reporting tools. You can go to the
Account Window at any time to see your account balance, total available funds, net liquidation
and equity with loan value and more. You can also monitor this data directly from your trading
window using the Trader Dashboard, a monitoring tool you can configure to display the last
price for any contracts and account-related information directly on your trading window.

So - TWS is an all-inclusive, awesome powerful trading tool. You may be wondering, "Where
does an API fit in with this?" Read on to discover the answer to that question.

For more information on TWS, see the TWS Users' Guide on our
web site.
Getting Started with the TWS Java API 16

TWS and the Java API
Chapter 2 - Why Use the TWS Java API?
Chapter 2 - Why Use the TWS Java API?
OK! Now that you are familiar with TWS and what it can do, we can move on to the amazing
API. If you actually read the last chapter, you might be thinking to yourself "Why would I want
to use an API when TWS seems to do everything." Or you could be thinking "Hmmmm, I
wonder if TWS can… fill in the blank?" OK, if you're asking the first question, I'll explain why
you might need the API, and if you're asking the second, it's actually the API that can fill in the
blank.

TWS has the capability to do tons of different things, but it does them in a certain way and
displays results in a certain way. It's likely that our development team, as fantastic as they
are, hasn't yet exhausted the number of features and way of implementing them that all of
you collectively can devise. So it's very likely that you, with your unique way of thinking, will
be or have been inspired by the power of TWS to say something like "Holy moly, I can't
believe I can really do all of this with TWS! Now if I could only just (fill in the blank),my life
would be complete!"

That's where the API comes in. Now, you can fill in the blank! It's going to take a little work to
get there, but once you see how cool it is to be able to access functionality from one
application to another, you'll be hooked.

TWS and the API

In addition to allowing you pretty much free reign to create new things and piece together
existing things in new ways, the API is also a great way to automate your tasks. You use the
API to harness the power behind TWS - in different ways.

Here's an analogy that might help you understand the relationship between TWS and the API.
Start by imagining TWS as a book (since TWS is constantly being enhanced, our analogy
imagines a static snapshot of TWS at a specific point in time). It's the reference book you were
looking for, filled with interesting and useful information, a book with a beginning, middle and
end, which follows a certain train of logic. You could skip certain chapters, read Chapter 10
first and Chapter 2 last, but it's still a book. Now imagine, in comparison, that the API is the
word processing program in which the book was created with the text of the book right there.
This allows you access to everything in the book, and most importantly, it lets you continually
change and update material, and automate any tasks that you'd have to perform manually
using just a book, like finding an index reference or going to a specific page from the table of
contents.

The API works in conjunction with TWS and with the processing functions that run behind
TWS, including IB's SmartRouting, high-speed order transmission and execution, support for
over 40 orders types, etc. TWS accesses this functionality in a certain way, and you can design
your API to take advantage of it in other ways.
Getting Started with the TWS Java API 17

TWS and the Java API
Chapter 2 - Why Use the TWS Java API?
Available API Technologies

IB provides a suite of custom APIs in multiple programming languages, all to the same end.
These include Java, C++, Active X for Visual Basic and .NET, and DDE for Excel (Visual Basic
for Applications, of VBA). This book focuses specifically on just one, the Java version. Why
would you use Java over the other API technologies? The main reason might be that you are a
Java expert. If you don't know Java or any other programming language, you should take a
look at the Excel/DDE API, which has a much smaller learning curve. But if you know Java,
this platform offers more flexibility than the DDE for Excel, is supported on Windows, MAC,
and Unix/Linux (the DDE is only supported in Windows), and provides very high performance.

For more information about our APIs, see the Application
Programming Interfaces page on our web site.

An Example

It's always easier to understand something when you have a real life example to contemplate.
What follows is a simple situation in which the API could be used to create a custom result.

TWS provides an optional field that shows you your position-specific P&L for the day as either
a percentage or an absolute value. Suppose you want to modify your position based on your
P&L value? At this writing, the only way to do this would be to watch the market data line to
see if the P&L changed, and then manually create and transmit an order, but only if you
happened to catch the value at the right point. Hmmmmm, I don't think so! Now, enter the
API! You can instruct the API to automatically trigger an order with specific parameters (such
as limit price and quantity) when the P&L hits a certain point. Now that's power! Another nice
benefit of the API is that it gives you the ability to use the data in TWS in different ways. We
know that TWS provides an extensive Account Information window that's chock-full of
everything you'll ever want to know about your account status. The thing is, it's only displayed
in a TWS window, like this:
Getting Started with the TWS Java API 18

TWS and the Java API
Chapter 2 - Why Use the TWS Java API?
Lovely though it is, what if you wanted to do something else with this information? What if you
want it reflected in some kind of banking spreadsheet where you log information for all
accounts that you own, including your checking account, Interactive Brokers' account, 401K,
ROIs, etc? Again - enter the API!

You can instruct the API to get any specific account information and put it wherever it belongs
in a spreadsheet. The information is linked to TWS, so it's easy to keep the information
updated by simply linking to a running version of TWS. With a little experimenting, and some
help from the API Reference Guide and the TWS Users' Guide, you'll be slinging data like a
short-order API chef in no time!

There are a few other things you must do before you can start working with the TWS Java API.
The next chapter gets you geared up and ready to go.
Getting Started with the TWS Java API 19

TWS and the Java API
Chapter 2 - Why Use the TWS Java API?
Getting Started with the TWS Java API 20

3
Preparing to Use the Java API

Although the API provides great flexibility in implementing your automated trading ideas, all of
its functionality runs through TWS. This means that you must have a TWS account with IB,
and that you must have your TWS running in order for the API to work. This section takes you
through the minor prep work you will need to complete, step by step.

Here's what you'll find in this section:

• Chapter 3 - Download the Java JDK and IDE

• Chapter 4- Download the API Software

• Chapter 5 - Connect to the Java Test Client

We want to tell you again that this book focuses on the TWS side of
the Java API - we don't really help you to learn Java. Unless you
are a fairly proficient Java programmer, or at least a very confident
and bold beginner, this may be more than you want to take on. We
suggest you start with a beginner's Java programming book, and

come back to us when you're comfortable with Java.
Getting Started with the TWS Java API 21

Preparing to Use the Java API
Chapter 3 - Download the Java JDK and IDE
Chapter 3 - Download the Java JDK and IDE
OK, well we've already said that you need to know Java before you can successfully implement
your own TWS Java API application, and there's a good chance you already have the Java
tools you'll need downloaded and installed. But in case you don't, we'll quickly walk you
through what you need:

• The Java development kit (JDK)

• An integrated development environment (IDE).

We like the J2SE Development Kit and NetBeans IDE Bundle that's available (free!) from the
Sun website. We're not including any version numbers of these Sun Java products, as they'll
likely be different by the time you read this. You can use any IDE you're comfortable with.

In this book we use NetBeans as the IDE of choice, so if you're using
another IDE you'll have to reinterpret our instructions to fit your
development environment. If you're using NetBeans and aren't totally
familiar with it, we recommend browsing through the Quick Start or
the tutorial, both of which are available on the Help menu.

Anyway, I know we're not giving you too much here, but we are assuming you have enough
savvy to find this stuff, download it, and install it. This is a tough line for us to walk, because
we're really focusing on the TWS Java API for beginners, not on Java for beginners. If you're
having trouble at this point, you should probably start with the TWS DDE for Excel API to get
your feet wet!

Once you have these pieces downloaded and installed, you can go to the IB website and
download the TWS API software.
Getting Started with the TWS Java API 22

Preparing to Use the Java API
Chapter 4- Download the API Software
Chapter 4- Download the API Software
Next, you need to download the API software from the IB website.

Step 1: Download the API software.

This step takes you out to the IB website at
http://individuals.interactivebrokers.com/en/p.php?f=programInterface&p=a&ib_entity=lic.
The menus are along the top of the homepage. Hold your mouse pointer over the Trading
menu, then click API Solutions.

On the API Solutions page, click the IB API button on the left side of the page.
Getting Started with the TWS Java API 23

http://individuals.interactivebrokers.com/en/p.php?f=programInterface&p=a&ib_entity=lic

Preparing to Use the Java API
Chapter 4- Download the API Software
This displays the IB API page which shows a table with links to software downloads that are
compatible with Windows, MAC or Unix platforms. When available, there will also be a
Windows Beta version of the software. Look across the top of the table and find the OS you
need.

For this book, we assume that you are using Windows. If you're
using a different operating system (Mac, Unix), be sure to adjust
the instructions accordingly!

In the Windows column, click Download Latest Version. This opens a File Download box, where
you can decide whether to save the installation file, or open it. We recommend you choose
Save and then select a place where you can easily find it, like your desktop (you choose the
path in the Save in field at the top of the Save As box that opens up). Once you've selected a
good place to put it, click the Save button. It takes seconds to download the executable file.
Note that the API installation file is named for the API version; for example, InstallAX_960.

We'll usually be stressing just the opposite, but at this point, you
need to make sure TWS is not running. If it is, you won't be able to
install the API software.
Getting Started with the TWS Java API 24

Preparing to Use the Java API
Chapter 4- Download the API Software
Step 2: Install the API software.

Next, go to the place where you saved the file (for example, your desktop or some other
location on your computer), and double-click the API software installation file icon. This starts
the installation wizard, a simple process that displays a series of dialogs with questions that
you must answer.

Remember where the installation wizard installs the application. You'll
need this information later when you open the API application in Excel.

Once you have completed the installation wizard, the sample application installs, and you're
ready to open the Java Test Client, connect to TWS, and get started using the Java API sample
application!
Getting Started with the TWS Java API 25

Preparing to Use the Java API
Chapter 5 - Connect to the Java Test Client
Chapter 5 - Connect to the Java Test Client
OK, you've got all the pieces in place. Now that we're done with the prep work, it's time to get
down to the fun stuff.

Although the API provides great flexibility in implementing your automated trading ideas, all of
its functionality runs through TWS. This means that you must have a TWS account with IB,
and you must have TWS running in order for the API to work. This section describes how to
enable TWS to connect to the Java API. Note that if you don't have an account with IB, you
can use the Demo TWS system to check things out.. If you DO have an account, we
recommend opening a linked PaperTrader test account, which simulates the TWS trading
environment, and gives you $100,000 in phantom cash to play with.

Enabling TWS to support the API is probably the simplest step you'll encounter in this book.
It's probably more difficult to actually remember to log into TWS before you run the API!

Step 1: Log into TWS.

OK, log into TWS, or run the Demo available on the Demo tab of the Trader Workstation page
on our website.

Now look up at the top of the trading window, and you'll see the menu bar. Click the Edit
menu, and then click Global Configuration. In the Configuration window, click API in the left
pane, then click Settings, which reveals several options on the right side of the window. Check
the Enable ActiveX and Socket Clients check box and click OK.

Step 2: Set Up the Java Test Client.

Now, open NetBeans and click New Project. This starts the project wizard. In the Projects
area, select Java Application and click Next. You'll see a screen like the one below.

Enter a project name and project location. Uncheck the box for Create Main Class and click
Finish.
Getting Started with the TWS Java API 26

Preparing to Use the Java API
Chapter 5 - Connect to the Java Test Client
Now right-click your new SampleJavaCode project from the Projects list and select Properties.
Getting Started with the TWS Java API 27

Preparing to Use the Java API
Chapter 5 - Connect to the Java Test Client
In the Source Package Folders area, click Add Folder and navigate to the directory where you
installed the API sample program. Add two folders: the com folder and the TestJavaClient
folder. Then click OK.

Step 3: Run the Java Test Client.

Now it's time to run the application. Press F6 to run. When the system prompts you to select
TestJavaClient.Main as the main class, click OK (recall that earlier, you had to uncheck the
Create Main Class box when you first set up the project; now is when you assign the main
class). And of course, click OK again.
Getting Started with the TWS Java API 28

Preparing to Use the Java API
Chapter 5 - Connect to the Java Test Client
Now press F6 to run again. You're looking at the java test client, and you should see
something like this thing below:

Here you are. What now? Part II focuses on performing the trading tasks defined by the action
buttons in the sample client. We'll take a quick, general look at what's going on behind the
GUI. Then we'll walk through the basics of the TWS API, in the order defined by the buttons in
the Java Test Client layout, pictures above.

The TWS API does not have to be written as a GUI program, but to
completely understand how the Java Test Client works, you should
have some general understanding of Java Swing. We recommend
taking a look at The Swing Tutorial on java.sun.com.
Getting Started with the TWS Java API 29

Preparing to Use the Java API
Chapter 5 - Connect to the Java Test Client
Getting Started with the TWS Java API 30

4
Market Data

You've completed the prep work, and you have the Java Test Client up and running. This
section of the book starts with a description of the basic framework of the Java Test Client,
then reviews the TWS Java API methods associated with each trading task.

In the following chapters, we'll show you the methods and parameters behind this sample
application, and how they call the methods and parameters in the TWS Java API.

Here's what you'll find in this section:

• Chapter 6 - Connect the Java Test Client to TWS

• Chapter 7: Requesting and Canceling Market Data

• Chapter 8 - Requesting and Canceling Market Depth

• Chapter 9 - Requesting and Canceling Historical Data

• Chapter 10 - Requesting and Canceling Real Time Bars

• Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions

• Chapter 12: Requesting Contract Data

Using the Java Test Client is a good way to practice locating and using the reference
information in the API Reference Guide. With the sample program, you can compare the data
in the sample message with the method parameters in the API Reference Guide.
Getting Started with the TWS Java API 31

Market Data
Chapter 6 - Connect the Java Test Client to TWS
Chapter 6 - Connect the Java Test Client to
TWS

This chapter describes the basic framework of the Java Test Client and what happens when
you connect and disconnect to a running instance of TWS.

Java Test Client Basic Framework

Let's take a look at the basic framework of the Java Test Client and the Java API. Here's the
Java Test Client when you first run it:

The black text panels and the buttons that you see in the Java Test client are defined in the
SampleFrame.java class, which is described on the next page.
Getting Started with the TWS Java API 32

Market Data
Chapter 6 - Connect the Java Test Client to TWS
SampleFrame.java

Here is a simplified class diagram that shows how SampleFrame.java in the Java Test Client
uses our TWS Java API.
Getting Started with the TWS Java API 33

Market Data
Chapter 6 - Connect the Java Test Client to TWS
The most important things to remember here are that the SampleFrame.java class
implements the EWrapper interface, which is the part of our TWS Java API that defines the
methods that receive messages from TWS, and calls the methods in EClientSocket, which
are used to send messages to TWS.

Throughout this book, we've included links to related help topics in
the online API Reference Guide. So if you see a link, feel free to
click it if you want to learn more about a particular class or method
in our TWS Java API

The SampleFrame.java class is where we attach an EClientSocket. The EClientSocket class is
used to send messages to TWS. We will call methods such as eConnect(), reqMarketData(),
etc. on the EClientSocket object. In the example below, we are passing this object to the
constructor of EclientSocket - that is, the current instance of the SampleFrame class (which is
an instance of EWrapper).

What Happens When I Click the Connect Button?

The SampleFrame.java class also contains the createButtonPanel() method, which is where
all the buttons on the Java Test client are defined.

The SampleFrame class and the createButtonPanel() method are
unique to the sample application; they are not part of the TWS Java
API and therefore are not documented in the API Reference Guide.

Class definition of SampleFrame.java

class SampleFrame extends JFrame implements EWrapper

EClientSocket constructor

EClientSocket m_client = new EClientSocket(this);

createButtonPanel() method

private JPanel createButtonPanel() {
JPanel buttonPanel = new JPanel(new GridLayout(0, 1));

.

.

.
}

Getting Started with the TWS Java API 34

Market Data
Chapter 6 - Connect the Java Test Client to TWS
Each button in the Java Test Client is really just a façade - a front for an ActionListener, which
defines the method to be called when the button is clicked. The ActionListener for the
Connect button is shown below.

So, when you click the Connect button, the onConnect() method of the SampleFrame class
executes. A ConnectDlg object, an extension of Jdialog, is instantiated. When the
setVisible(true) method is called, the dialog is displayed.

Here is what the complete onConnect() method looks like.

ActionListener for the Connect button in createButtonPanel()

JButton butConnect = new JButton("Connect");
butConnect.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
onConnect();
}

});

onConnect() method

void onConnect() {
m_bIsFAAccount = false;
// get connection parameters
ConnectDlg dlg = new ConnectDlg(this);
dlg.setVisible(true);
if(!dlg.m_rc) {

return;
}

// connect to TWS
m_disconnectInProgress = false;

m_client.eConnect(dlg.m_retIpAddress, dlg.m_retPort,
dlg.m_retClientId);

if (m_client.isConnected()) {
m_TWS.add("Connected to Tws server version " +

m_client.serverVersion() + " at " +
m_client.TwsConnectionTime());

}
}

Getting Started with the TWS Java API 35

Market Data
Chapter 6 - Connect the Java Test Client to TWS
And then you can enter the IP Address, Port and Client Id values in the input fields of the
dialog. When you click the OK button (which has its own ActionListener defined in the
ConnectDlg class), the onOk() method is executed.

The input values are retrieved and stored in the ConnectDlg object. A return code is set to true
indicating success and the dialog is closed by calling the setVisible(false) method. In the user
interface, a confirmation dialog is displayed.

Control is now passed back to the onConnect() method in the SampleFrame. The return code
was true, so processing continues. As shown in the following code, which is a portion of the
onConnect() method, we make a call to the eConnect() method of the EClientSocket
using the attributes of the ConnectDlg object as the parameters for IP Address, Port and Client
Id. We can then check if the connection was successful by calling the isConnected() method.

In the code below, we add a message to the m_TWS object, which is an extension of the
JPanel class. The end result is the message Connected to Tws server version… which displays
in the TWS Server Responses panel of the Java Test Client.

If the connection is successful, a message is displayed in the TWS Server Responses panel of
the Java Test Client as shown in the following figure.

Connecting to TWS in the onConnect() method

m_client.eConnect(dlg.m_retIpAddress, dlg.m_retPort,
dlg.m_retClientId);

if (m_client.isConnected()) {
m_TWS.add("Connected to Tws server version " +

m_client.serverVersion() + " at " +
m_client.TwsConnectionTime());

}

Getting Started with the TWS Java API 36

Market Data
Chapter 6 - Connect the Java Test Client to TWS
Disconnecting from a Running Instance of TWS

When you click the Disconnect button, the ActionListener in SampleFrame.java calls the
onDisconnect() method (also in SampleFrame.java), which in turn calls the eDisconnect()
method in the Java API EClientSocket object.

OK, got all of that? Great! Now let's move on, and see what happens when you use the market
data buttons.

ActionListener for the Disconnect button (defined in createButtonPanel() method)

JButton butDisconnect = new JButton("Disconnect");
butDisconnect.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
onDisconnect();

}
});

Disconnecting from TWS in the onDisconnect() method of SampleFrame.java

m_disconnectInProgress = true;
m_client.eDisconnect();
}

Getting Started with the TWS Java API 37

Market Data
Chapter 7: Requesting and Canceling Market Data
Chapter 7: Requesting and Canceling Market
Data

This chapter describes how the Java Test Client requests and cancels market data. When you
click one of the market data buttons, the Sample dialog appears.

This is the orderDlg object, an extension of Jdialog, that is instantiated when one of the
methods in the ActionListeners executes.
Getting Started with the TWS Java API 38

Market Data
Chapter 7: Requesting and Canceling Market Data
What Happens When I Click the Req Mkt Data Button?

Once you connect to TWS using the Java Test Client, you get market data by clicking the
button, entering an underlying and some other information, and clicking OK. But what are you
really doing? Each time you click a button in the sample client, an ActionListener with a
defined method does its thing.

When you click the Req Mkt Data button, the attached ActionListener (shown below) "listens"
to your request and puts the appropriate method, onReqMktData(), into "action!"

Next, the method defined in the ActionListener, onReqMktData(), opens the Sample dialog
(i.e.instantiating the orderDlg object) so that you can fill in market data fields.

Remember that the SampleFrame.java class is where we attach an EclientSocket, which is the
object used to send messages to TWS.

When you click OK, the reqMkt.Data() method sends your market data request to TWS and,
if everything you entered is valid, the data you requested is returned by way of the
tickPrice(), tickSize(), tickGeneric(), tickOptionComputation(), tickString() and
tickEFP() methods.

When you use the EClientSocket object to send a message to TWS via a specific method
(reqMktData()), you'll receive data back from TWS via a socket with implementations of
specific methods (tickPrice(), tickSize(), etc.).

ActionListener for the Req Mkt Data button in createButtonPanel()

JButton butMktData = new JButton ("Req Mkt Data");
butMktData.addActionListener (new ActionListener() {

public void actionPerformed (ActionEvent e) {
onReqMktData();

 onReqMktData() method in SampleFrame.java

void onReqMktData() {
// run m_orderDlg
m_orderDlg.show();

if(!m_orderDlg.m_rc) {
return;

}
// req mkt data
m_client.reqMktData(m_orderDlg.m_id, m_orderDlg.m_contract,

m_orderDlg.m_genericTicks, m_orderDlg.m_snapshotMktData);
}

Getting Started with the TWS Java API 39

Market Data
Chapter 7: Requesting and Canceling Market Data
The methods called by the ActionListener are unique to the sample
application; they are not part of the TWS Java API and therefore
are not documented in the API Reference Guide.

The Sample Dialog

A sample dialog appears, divided into seven different areas of information. Each of these areas
relates to a method parameter.

Note that this same dialog is
displayed for many of the
action buttons on the list. You
need to know which
methods/parameters
(represented by fields in the
Sample box) need data for
each specific request.
Getting Started with the TWS Java API 40

Market Data
Chapter 7: Requesting and Canceling Market Data
The reqMktData() Method

Let's find out which parameters to use for requesting market data. The Class EClientSocket
reqMktData() method looks like this:

This table is for illustrative purposes only and is not intended to portray valid API documentation.

As you can see from the table above, this method has four parameters, the first three of which
correspond to the fields in the Order dialog that you fill in.

Now let's take a look at the sample entry box you got when you clicked the Req Mkt Data
button and see how and where the two relate.

void reqMktData(int tickerId, Contract contract, String
genericTicklist, boolean snapshot)

Parameter Description

tickerId The ticker id. Must be a unique value. When the market data
returns, it will be identified by this tag. This is also used when
canceling the market data.

contract This class contains attributes used to describe the contract.

genericTicklist A comma delimited list of generic tick types.

snapshot Check to return a single snapshot of market data and have the
market data subscription cancel. Do not enter any
genericTicklist values if you use snapshot.
Getting Started with the TWS Java API 41

Market Data
Chapter 7: Requesting and Canceling Market Data

The circled sections in the picture above (Message ID, Contract Info and Market Data)
correspond to the parameters in the reqMktData() method (tickerID, contract,
genericTickList, and snapshot). The contract class contains the parameters that correspond to
the fields in the Message Id and Contract Info sections of the Sample dialog. You can ignore
the other fields in the Sample dialog right now, because they represent parameters from
different methods. Don't worry, we'll be revisiting them very soon!

The Symbol, Security Type, Exchange and Currency values are required
for all instrument types. If your security type is STK, the values to the left
are all you need. But if you're looking for the latest price on a Jan08 27.5
call, you need to give the method a bit more than that. I mean, it's really

cool and can do a lot of things, but it can't read minds! The moral: be sure you
include values in the appropriate fields based on what return values you want
to get.
Getting Started with the TWS Java API 42

Market Data
Chapter 7: Requesting and Canceling Market Data
Once you have these parameters filled out to your satisfaction and click OK, you're basically
sending a message to TWS asking to see market data for the specific contract. TWS will
receive this message and reply with your requested market data. Without changing anything,
let's use the data already in the sample app just to see what the response from TWS looks
like. If you're ready, click OK.

TWS returns the market data values as shown in the screen below:

Note that the id=1 corresponds directly to the Message ID of "1" in the Sample dialog.

Getting Started with the TWS Java API 43

Market Data
Chapter 7: Requesting and Canceling Market Data
EWrapper Methods that Return Market Data

These methods in the EWrapper interface return the following data:

These methods are described in the Java EWrapper Methods section of the API Reference
Guide.

tickPrice()

void tickPrice(int tickerId, int field, double price, int
canAutoExecute)

tickSize()

void tickSize(int tickerId, int field, int size)

tickOptionComputation()

void tickOptionComputation(int tickerId, int field, double
impliedVol, double delta, double modelPrice, double pvDividend)

tickGeneric()

void tickGeneric(int tickerId, int tickType, double value)

tickString()

void tickString(int tickerId, int tickType, String value)

tickEFP()

void tickEFP(int tickerId, int tickType, double basisPoints, String
formattedBasisPoints, double impliedFuture, int holdDays, String
futureExpiry, double dividendImpact, double dividendsToExpiry)
Getting Started with the TWS Java API 44

Market Data
Chapter 7: Requesting and Canceling Market Data
Getting a Snapshot of Market Data

Another way to get market data from TWS to the Java Test Client is to get a snapshot of
market data. A market data snapshot gives you all the market data in which you are
interested for a contract for a single moment in time. What this means is that instead of
watching the requested market data continuously scroll by in the Market and Historical Data
text panel of the Java Test Client, you get a single "snapshot" of the data. This frees you from
having to keep up with the scrolling data and having to cancel the market data request when
you are finished.

To get snapshot market data, simply click the Req Mkt Data button, then fill in the
appropriate fields in the Sample dialog, and finally check the Snapshot check box and click
OK.

Snapshot is a parameter of the reqMktData() EClientSocket method.

Canceling Market Data

When you click the Cancel Mkt Data button, the attached ActionListener calls the
onCancelMktData() method.

The onCancelMktData() method in turn calls the EClientSocket cancelMktData() method,
and market data for the specified id is canceled:

ActionListener for the Cancel Mkt Data button in createButtonPanel()

JButton butCancelMktData = new JButton ("Cancel Mkt Data");
butMktData.addActionListener (new ActionListener() {

public void actionPerformed (ActionEvent e) {
onCancelMktData();

onCancelMktData() Method in SampleFrame.java

void onCancelMktData() {
// run m_orderDlg
m_orderDlg.show();
if(!m_orderDlg.m_rc) {

return;
// cancel market data
m_client.cancelMktData(m_orderDlg.m_id);
}

Getting Started with the TWS Java API 45

Market Data
Chapter 8 - Requesting and Canceling Market Depth
Chapter 8 - Requesting and Canceling Market
Depth

This chapter discusses the methods for requesting and canceling market depth in the Java
Test Client. We'll show you the methods and parameters behind the sample application and
how they call the methods in the TWS Java API.

For requesting market depth, you need to use the highlighted fields in the Order Dialog as
shown here:

Getting Started with the TWS Java API 46

Market Data
Chapter 8 - Requesting and Canceling Market Depth
What Happens When I Click the Req Mkt Depth Button?

When you click the Req Mkt Depth button, the attached ActionListener defined in
createButtonPanel() in SampleFrame.java puts the appropriate method,
onReqMktDepth(), into action.

The method defined in the ActionListener, onReqMktDepth() is called, and the Order Dialog
pictured below displays. Within that method, we make a call to the EClientSocket
reqMktDepth() method below, which sends the values you entered in the shaded market
data parameters to TWS.

The reqMktDepth() Method

Let's find out which parameters are used when you request market depth. The Class
EClientSocket reqMktDepth() method header looks like this:

This table is for illustrative purposes only and is not intended to portray valid API documentation.

ActionListener for the Req Mkt Depth button in createButtonPanel()

JButton butMktData = new JButton ("Req Mkt Data");
butMktDepth.addActionListener (new ActionListener() {

public void actionPerformed (ActionEvent e) {
onReqMktDepth();

onReqMktDepth() method in SampleFrame.java

void onReqMktDepth() {
// run m_orderDlg
m_orderDlg.show();
if(!m_orderDlg.m_rc) {

return;
}
m_mktDepthDlg.setParams{ m_client, m)orderDlg.m_id)
m_client.reqMktDepth(m_orderDlg.m_id, m_orderDlg.m_contract,

xxxm_orderDlg.m_marketDepthRows);
m_mktDepthDlg.show();

}

void reqMktDepth(int tickerId, Contract contract, int numRows)

Parameter Description

tickerId The ticker Id. Must be a unique value. When the market depth
data returns, it will be identified by this tag. This is also used
when canceling the market depth.

contract This class contains attributes used to describe the contract.

numRows Specifies the number of market depth rows to return.
Getting Started with the TWS Java API 47

Market Data
Chapter 8 - Requesting and Canceling Market Depth
As you can see from the previous table, this method has two parameters, contract and
numRows, which correspond to the fields in the two sections of the Order dialog that you filled
in.

The market depth will be returned via the updateMktDepth() and updateMktDepthL2()
methods.

The updateMktDepth() and updateMktDepthL2() Methods

These EWrapper methods return market depth.

updateMktDepth() returns market depth.

updateMktDepthL2() returns Level II market depth.

Canceling Market Depth

When you click the Cancel Mkt Depth button, the attached ActionListener calls the
onCancelMktDepth() method.

The onCancelMktDepth() method in turn calls the EClientSocket cancelMktDepth()
method, and market depth for the specified id is canceled:

void updateMktDepth(int tickerId, int position, int operation, int
side, double price, int size)

void updateMktDepthL2(int tickerId, int position, String
marketMaker,int operation, int side, double price, int size)

ActionListener for the Cancel Mkt Depth button in createButtonPanel()

JButton butCancelMktDepth = new JButton ("Cancel Mkt Depth");
butMktData.addActionListener (new ActionListener() {

public void actionPerformed (ActionEvent e) {
onCancelMktDepth();

onCancelMktDepth() Method in SampleFrame.java

void onCancelMktDepth() {
// run m_orderDlg
m_orderDlg.show();
if(!m_orderDlg.m_rc) {

return;
// cancel market depth
m_client.cancelMktDepth(m_orderDlg.m_id);
}

Getting Started with the TWS Java API 48

Market Data
Chapter 9 - Requesting and Canceling Historical Data
Chapter 9 - Requesting and Canceling
Historical Data

This chapter focuses on requesting and canceling historical data. We'll show you the methods
and parameters behind the Java Test Client and how they call the methods in the TWS Java
API. For requesting historical data, you need to use the fields circled below:
Getting Started with the TWS Java API 49

Market Data
Chapter 9 - Requesting and Canceling Historical Data
What Happens When I Click the Historical Data Button?

When you click the Historical Data button, the attached ActionListener defined in
createButtonPanel() in SampleFrame.java calls the method onHistoricalData().

The method defined in the ActionListener, onHistoricalData(), is called, and the familiar
Order dialog appears. Within that method, we make a call to the EClientSocket
reqHistoricalData() method below, which sends the values you entered to TWS.

The reqHistoricalData() Method

So which parameters are used when you request historical data? The parameters in the
EClientSocket reqHistoricalData() method return the data you request. The
reqHistoricalData() method header looks like this:

ActionListener for the Historical Data button in createButtonPanel()

JButton butHistoricalData = new JButton ("Historical Data");
butMktDepth.addActionListener (new ActionListener() {

public void actionPerformed (ActionEvent e) {
onHistoricalData();

onHistoricalData() method in SampleFrame.java

void onHistoricalData() {
// run m_orderDlg
m_orderDlg.show();

if(!m_orderDlg.m_rc) {
return;

}
// req historical data
m_client.reqHistoricalData(m_orderDlg.m_id,
m_orderDlg.m_contract, m_orderDlg.m_endDateTime,

m_orderDlg.m_durationStr, m_orderDlg.m_barSizeSetting,
m_orderDlg.m_whatToShow, m_orderDlg.m_useRTH,
m_orderDlg.m_formatDate);

}

void reqHistoricalData (int id, Contract contract, String
endDateTime,String durationStr, String barSizeSetting, String
whatToShow, int useRTH, int formatDate)
Getting Started with the TWS Java API 50

Market Data
Chapter 9 - Requesting and Canceling Historical Data
This method has numerous parameters that correspond to the fields in the two sections of the
Order dialog that you fill in, including end date and time, duration, bar size setting, what to
show, regular trading hours, and date format style. There are too many to display the entire
list of parameters and their values here, so you'll have to check out the API Reference Guide
for more details.

The historicalData() Method

The values are returned via the parameters in the EWrapper interface historicalData()
method, whose header is shown below.

You can see all of this methods's parameters in the historicalData() method topic of the API
Reference Guide.

Canceling Historical Data

When you click the Cancel Hist. Data button, the attached ActionListener calls the
onCancelHistoricalData() method.

The onCancelHistoricalData() method in turn calls the EClientSocket
cancelHistoricalData() method, and historical data for the specified id is canceled:

Historical data for the specified id is canceled.

void historicalData (int reqId, String date, double open, double
high,double low, double close, int volume, int count, double WAP,
boolean hasGaps)

ActionListener for the Cancel Hist. Data button in createButtonPanel()

JButton butCancelHistoricalData = new JButton ("Cancel Hist.
Data");
butMktData.addActionListener (new ActionListener() {

public void actionPerformed (ActionEvent e) {
onCancelHistoricalData();

onCancelHistoricalData() Method in SampleFrame.java

void onCancelHistoricalData() {
// run m_orderDlg
m_orderDlg.show();
if(!m_orderDlg.m_rc) {

return;
// cancel historical data
m_client.cancelHistoricalData(m_orderDlg.m_id);

}

Getting Started with the TWS Java API 51

Market Data
Chapter 10 - Requesting and Canceling Real Time Bars
Chapter 10 - Requesting and Canceling Real
Time Bars

This chapter discusses the methods for requesting and canceling real time bars. Real time bars
allow you to get a summary of real-time market data every five seconds, including the
opening and closing price, and the high and the low within that five-second period (using TWS
charting terminology, we call these five-second periods "bars"). You can also get data showing
trades, midpoints, bids or asks. We show you the methods and parameters behind the Sample
GUI, and how they call the methods in the TWS Java API. For requesting real time bars, you
need to use the fields circled in the Order Dialog shown below:
Getting Started with the TWS Java API 52

Market Data
Chapter 10 - Requesting and Canceling Real Time Bars
What Happens When I Click the Req Real Time Bars Button?

When you click the Req Real Time Bars button, the attached ActionListener defined in
createButtonPanel() in SampleFrame.java calls the method onReqRealTimeBars().

The method defined in the ActionListener, onReqRealTimeBars(), is called, and the familiar
Order dialog appears. Within that method, we make a call to the EClientSocket
reqRealTimeBars() method, which sends the values you entered to TWS (bar size setting,
what to show, and whether or not to include data outside regular trading hours).

In the API release supported by this document, the real-time bars default to a size of five
seconds. This means that no matter what you enter in the Bar Size Setting field in the Sample
dialog, the size of the real-time bars you get will be five seconds.

The reqRealTimeBars() Method

The parameters in the EClientSocket reqRealTimeBars() method return the data you
request. The reqRealTimeBars() method header looks like this:

ActionListener for the Req Real Time Bars button in createButtonPanel()

JButton butRealTimeBars = new JButton("Req Real Time Bars");
butRealTimeBars.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
onReqRealTimeBars();

onReqRealTimeBars() method in SampleFrame.java

void onReqRealTimeBars() {
// run m_orderDlg
m_orderDlg.show();
if(!m_orderDlg.m_rc) {

return;
}
// req mkt data
m_client.reqRealTimeBars(m_orderDlg.m_id,

xxxm_orderDlg.m_contract,
5 /* TODO: parse and use m_orderDlg.m_barSizeSetting */,
m_orderDlg.m_whatToShow, m_orderDlg.m_useRTH > 0);

}

void reqRealTimeBars(int tickerId, Contract contract, int barSize,
String whatToShow, boolean useRTH)
Getting Started with the TWS Java API 53

Market Data
Chapter 10 - Requesting and Canceling Real Time Bars
The realtimeBar() Method

The real time bars are returned via the parameters in the EWrapper interface realtimeBar()
method, whose header is shown below.

Canceling Real Time Bars

To cancel real time bars, click the Cancel Real Time Bars button, then click OK in the
Sample dialog. When you click Cancel Real Time Bars, the attached ActionListener calls the
onCancelRealTimeBars() method.

The onCancelRealTimeBars () method in turn calls the EClientSocket
cancelRealTimeBars() method, and data for real time bars for the specified id is canceled.

void realtimeBar(int reqId, long time, double open, double high,
double low, double close, long volume, double wap, int count)

ActionListener for the Cancel Real Time Bars button in createButtonPanel()

JButton butCancelRealTimeBars = new JButton ("Cancel Real Time
Bars");
butMktData.addActionListener (new ActionListener() {

public void actionPerformed (ActionEvent e) {
onCancelRealTimeBars();

onCancelRealTimeBars() Method in SampleFrame.java

void onCancelRealTimeBars() {
// run m_orderDlg
m_orderDlg.show();
if(!m_orderDlg.m_rc) {

return;
// cancel market data
m_client.cancelRealTimeBars(m_orderDlg.m_id);
}

Getting Started with the TWS Java API 54

Market Data
Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions
Chapter 11 - Subscribing to and Canceling
Market Scanner Subscriptions

This chapter describes the methods used for requesting market scanner parameters,
subscribing to a market scanner, and canceling a subscription to a market scanner. We'll show
you the methods and parameters behind the Java Test Client sample application, and how
they call the methods in the TWS Java API. In this case, the Scanner Dialog opens, instead of
the Order Dialog which we've seen for the other buttons on the sample application.

Getting Started with the TWS Java API 55

Market Data
Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions
What Happens When I Click the Market Scanner Button?

When you click the Market Scanner button, the attached ActionListener defined in
createButtonPanel() in SampleFrame.java calls the method onScanner().

The onScanner() method displays the Scanner Dialog (pictured on the previous page) and
calls one of two EClientSocket methods, depending on which button you click.

If you click the Request Parameters button in the Scanner dialog, we make a call to the
EClientSocket reqScannerParameters() method, which sends a request for available
scanner parameters to TWS.

If you click the Subscribe button in the Scanner dialog, we make a call to the EClientSocket
reqScannerSubscription() method, which sends the values you entered in the scanner
parameters to TWS.

ActionListener for the Market Scanner button in createButtonPanel()

JButton butScanner = new JButton("Market Scanner");
butScanner.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
onScanner();

onScanner() Method in SampleFrame.java

void onScanner() {
m_scannerDlg.show();
if (m_scannerDlg.m_userSelection ==

ScannerDlg.CANCEL_SELECTION) {
m_client.cancelScannerSubscription(m_scannerDlg.m_id);

}
else if (m_scannerDlg.m_userSelection ==

ScannerDlg.SUBSCRIBE_SELECTION) {
m_client.reqScannerSubscription(m_scannerDlg.m_id,

m_scannerDlg.m_subscription);
}
else if (m_scannerDlg.m_userSelection ==

ScannerDlg.REQUEST_PARAMETERS_SELECTION) {
m_client.reqScannerParameters();

}
}

Getting Started with the TWS Java API 56

Market Data
Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions
The reqScannerParameters() and reqScannerSubscription() Methods

reqScannerParameters() receives an XML document that describes the valid parameters
that a scanner subscription can have. In the Java Test Client, these parameters are displayed
in the TWS Server Responses text panel. The reqScannerParameters() method header
looks like this:

reqScannerSubscription() receives market scanner results from TWS through the
EWrapper method scannerData() method. The reqScannerSubscription method header looks
like this:

The scannerData() Method

The scanner data is returned from TWS by the EWrapper method scannerData(), whose
header is shown below:

The scannerDataEnd() Method

There is one additional method in EWrapper used in conjunction with scanner subscriptions:
scannerDataEnd().

This method is called after a full snapshot of a scanner window has been received and serves
as a sort of end tag. It helps define the end of one scanner snapshot and the beginning of the
next.

public synchronized void reqScannerParameters()

public synchronized void reqScannerSubscription(int tickerId,
ScannerSubscription subscription)

void scannerData(int reqId, int rank, ContractDetails
contractDetails, String distance, String benchmark, String
projection, String legsStr)
Getting Started with the TWS Java API 57

Market Data
Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions
Cancel a Market Scanner Subscription

To cancel your scanner subscription, click the Cancel Subscription button in the Scanner
dialog. When you click this button, the attached ActionListener in ScannerDlg.java calls the
onCancelSubscription() method.

The onCancelSubscription() method in turn calls the EClientSocket
cancelScannerSubscription() method, and the scanner subscription for the specified id is
canceled.

The header for the EClientSocket method cancelScannerSubscription() is shown below.

ActionListener for the Cancel Subscription button

m_cancel.addActionLister(new ActionLister() {
public void actionPerformed(ActionEvent e) {

onCancelSubscription();

onCancelSubscription() Method in ScannerDlg.java

void onCancelSubscription() {
m_userSelection = CANCEL_SELECTION;
m_id = Integer.parseInt(m_Id.getText().trim());
setVisible(false);

}

void cancelScannerSubscription(int tickerId)
Getting Started with the TWS Java API 58

Market Data
Chapter 12: Requesting Contract Data
Chapter 12: Requesting Contract Data
This chapter shows you how to request contract data, including details such as the local
symbol, conid, trading class, valid order types, and exchanges. We'll walk you through
everything that happens from the time you click the Req Contract Data button in the sample
application, to the moment you're taking in the fascinating details of your desired contract. It
all happens fast, so pay attention!

What Happens When I Click the Req Contract Data Button?

To request contract data using the Java Test Client sample application, you'll need to enter
data in the fields circled in the Order dialog pictured below. The Order dialog appears when
you click the Req Contract Data button.

When you click the Req Contract Data button, the attached Action Listener in
SampleFrame.java calls the onReqContractData() method, also in SampleFrame, which
displays the Order dialog (the top half of which you can see in the picture above).
Getting Started with the TWS Java API 59

Market Data
Chapter 12: Requesting Contract Data
When you're finished entering the information in the Contract Info section of the Order dialog
and you click OK, the onReqContractData() method calls the EClientSocket
reqContractDetails() method.

The reqContractDetails() Method

The reqContractDetails() method, whose header is shown below, contains one parameter,
contract. If you recall from earlier chapters, the contract parameter contains all the attributes
used to describe the requested contract.

The contractDetails() Method

The actual contract data is returned from TWS via the Java API EWrapper contractDetails()
method. This method contains one parameter, ContractDetails, which you probably figured out
by now contains all the attributes used to describe the requested contract.

In our Java Test Client sample application, the contract details you request are displayed in
the TWS Server Responses text panel of the Sample GUI.

onReqContractData() Method in SampleFrame.java

void onReqContractData() {
// run m_orderDlg
m_orderDlg.show();
if(!m_orderDlg.m_rc) {

return;
}
// req mkt data
m_client.reqContractDetails(m_orderDlg.m_contract);
}

public synchronized void reqContractDetails(Contract contract)

void contractDetails(ContractDetails contractDetails)
Getting Started with the TWS Java API 60

5
Orders and Executions

This section describes how the Java API sample application handles orders. We'll show you the
methods, events and parameters behind such trading tasks as placing and canceling orders,
exercising opions and viewing open orders and executions.

Here's what you'll find in this section:

• Chapter 13: Placing and Canceling an Order

• Chapter 14: Exercising Options

• Chapter 15: Extended Order Attributes

• Chapter 16: Requesting Open Orders

• Chapter 17 Requesting Executions

Using the Java Test Client is a good way to practice locating and using the reference
information in the API Reference Guide. With the sample program, you can compare the data
in the sample message with the method parameters in the API Reference Guide.
Getting Started with the TWS Java API 61

Orders and Executions
Chapter 13: Placing and Canceling an Order
Chapter 13: Placing and Canceling an Order
These next few chapters look at the order-related actions in the Java Test Client sample
application, which are grouped together in the second series of buttons. Actions such as
placing and Canceling an order, exercising options and applying extended order attributes are
included here. Just as in earlier chapters where we discussed some of the other buttons in the
sample application, when you click one of these order-related buttons, the Sample dialog
appears.

Getting Started with the TWS Java API 62

Orders and Executions
Chapter 13: Placing and Canceling an Order
What Happens When I Place an Order?

Let's take a look at what happens when you place an order. In this section, we'll show you the
methods and parameters behind the Java Test Client sample application, and how they call the
methods in the TWS Java API.

When you click the Place Order button, the attached ActionListener defined in
createButtonPanel() in SampleFrame.java calls the method onPlaceOrder(), also in
SampleFrame, and displays the Order dialog.

If you've read some of the previous chapters, you'll know that each
button in the sample application is associated with an Action
Listener in SampleFrame.java. Each Action Listener in turns calls
another method in SampleFrame, which in turn calls a method in
the Java API EClientSocket class. For the rest of the buttons in the

sample application, we'll skip showing you each and every Action Listener.
However, you can always take a peek at Appendix E, which lists the buttons in
the sample application and their Action Listeners.

As we mentioned earlier, the Order dialog is actually the orderDlg object, an extension of
Jdialog, which is instantiated when the method in the ActionListener executes. This dialog
makes it easy to define the valid values for the parameters that will be sent to TWS via the
EClientSocket methods.

When placing an order, you'll use the order fields circled in the Order dialog pictured on the
next page.
Getting Started with the TWS Java API 63

Orders and Executions
Chapter 13: Placing and Canceling an Order

The onPlaceOrder() method in turn calls yet another method in SampleFrame called
placeOrder(), which displays the Order dialog and calls the Java API EClientSocket method
placeOrder().

Be careful not to confuse the two placeOrder() methods; one is part of the Java Test Client
(the one that displays the Order dialog) and the other is part of the Java API (the one in
EClientSocket that sends your order information to TWS).
Getting Started with the TWS Java API 64

Orders and Executions
Chapter 13: Placing and Canceling an Order
The placeOrder() Method

The EClientSocket placeOrder() method, shown below, sends the values you entered in the
Order dialog to TWS.

Tables are for illustrative purposes only and are not intended to represent valid API information.

The contract and order classes contain the parameters that correspond to the contract and
order fields in the Order dialog that you fill in.

placeOrder() Method in SampleFrame.java

void placeOrder(boolean whatIf) {
This is the part of the method that displays the Order dialog:

// run m_orderDlg
m_orderDlg.show();

`if(!m_orderDlg.m_rc) {
return;

}
Order order = m_orderDlg.m_order;
// save old and set new value of whatIf attribute
boolean savedWhatIf = order.m_whatIf;
order.m_whatIf = whatIf;

This is the part of the method that calls the EClientSocket
placeOrder() method:

// place order
m_client.placeOrder(m_orderDlg.m_id, m_orderDlg.m_contract,

order);
// restore whatIf attribute
order.m_whatIf = savedWhatIf;

}

public synchronized void placeOrder(int id, Contract contract,
Order order)

Parameter Description

id The order Id. You must specify a unique value. When the order
status returns, it will be identified by this tag. This tag is also
used when canceling the order.

contract This class contains attributes used to describe the contract.

order This structure contains the details of the order. Note: Each
client MUST connect with a unique clientId.
Getting Started with the TWS Java API 65

Orders and Executions
Chapter 13: Placing and Canceling an Order
The orderStatus() Method

The values are returned via the EWrapper orderStatus() method, whose header is shown
below.

Canceling an Order

To cancel an order, click the Cancel Order button in the Sample dialog. When you click this
button, the attached ActionListener in SampleFrame.java calls the onCancelOrder() method.

The onCancelOrder() method displays the Order dialog, in which you must enter the correct
Id, then press OK to completely cancel your order. Behind the scenes, the onCancelOrder()
method calls the EClientSocket cancelOrder() method, and the order associated with the
specified ID is canceled.

The header for the EClientSocket method cancelOrder() is shown below.

Modifying an Order

To modify an order using the API, resubmit the order you want to modify using the same order
id, but with the price or quantity modified as required. Only certain fields such as price or
quantity can be altered using this method. If you want to change the order type or action, you
will have to cancel the order and submit a new order.

void orderStatus(int orderId, String status, int filled, int
remaining, double avgFillPrice, int permId, int parentId, double
lastFillPrice, int clientId, String whyHeld)

onCancelOrder() Method in ScannerDlg.java

void onCancelOrder() {
// run m_orderDlg
m_orderDlg.show();
if(!m_orderDlg.m_rc) {

return;
}
// cancel order
m_client.cancelOrder(m_orderDlg.m_id);

}

void cancelOrder(int id)
Getting Started with the TWS Java API 66

Orders and Executions
Chapter 13: Placing and Canceling an Order
Requesting "What-If" Data before You Place an Order

Another feature supported by the Java Test Client sample application is the ability to request
margin and commission "what if" data before you place an order. This means that you can
click the What If button, set up your order as if you were actually placing it, then see what
the margins and commissions would be if the trade went through.

The Order class, as you recall from earlier in this chapter, is one of the parameters in the
placeOrder() EClientSocket method. Within the order class, there is an attribute called
whatIf(). When this value is set to true, the margin and commission data is received via the
OrderState class, which is one of the parameters in the openOrder() EWrapper method.
Getting Started with the TWS Java API 67

Orders and Executions
Chapter 14: Exercising Options
Chapter 14: Exercising Options
This chapter discusses how the Java Test Client sample application exercises options prior to
expiration, and instructs options to lapse. We'll show you the methods and parameters behind
the Options Exercise area of the sample application, and see how these methods call the
methods in the TWS Java API.

What Happens When I Click the Exercise Options Button?

When you click the Exercise Options button, the attached ActionListener defined in
createButtonPanel() in SampleFrame.java calls the method onExerciseOptions(), also in
SampleFrame, which displays the Order dialog.

To exercise an option, you'll use the fields circled in the Order dialog, pictured on the next
page.

onExerciseOptions() Method in SampleFrame.java

void onExerciseOptions() {
m_orderDlg.show();
if(!m_orderDlg.m_rc) {

return;
}
// cancel order
m_client.exerciseOptions(m_orderDlg.m_id,

m_orderDlg.m_contract, m_orderDlg.m_exerciseAction,
m_orderDlg.m_exerciseQuantity, m_orderDlg.m_order.m_account,
m_orderDlg.m_override);
}

Getting Started with the TWS Java API 68

Orders and Executions
Chapter 14: Exercising Options

Getting Started with the TWS Java API 69

Orders and Executions
Chapter 14: Exercising Options
Within the onExerciseOptions() method, we also make a call to API EClientSocket
exerciseOptions() method, shown below, which sends the values you entered in Order
dialog to TWS.

The exerciseOptions() Method

Tables are for illustrative purposes only and are not intended to represent valid API information.

In this case, no values are returned by the EWrapper interface, as is the case with many other
functions in the TWS Java API.

public synchronized void exerciseOptions(int tickerId, Contract
contract, int exerciseAction, int exerciseQuantity, String account,
int override)

Parameter Description

tickerId The Id for the exercise request

contract This class contains attributes used to describe the contract.

exerciseAction this can have two values:

• 1 = exercise

• 2 = lapse

exerciseQuantity The number of contracts to be exercised

account For institutional orders. Specifies the IB account.

override Specifies whether your setting will override the system's
natural action. For example, if your action is "exercise" and the
option is not in-the-money, by natural action the option would
not exercise. If you have override set to "yes" the natural
action would be overridden and the out-of-the money option
would be exercised. Values are:

• 0 = do not override

• 1 = override
Getting Started with the TWS Java API 70

Orders and Executions
Chapter 15: Extended Order Attributes
Chapter 15: Extended Order Attributes
This chapter discusses how to apply extended, or non-essential, order attributes to your order.
This sample action is different from many of the others we've looked at, as the extended order
attributes for the Java API are actually included in the Order java class. For ease of use, we
have created a separate dialog in which you can assign values to the extended order
attributes.So although you will see a new dialog when you click the Extended button, the
selections you're setting do not come from a new API method.

What Happens When I Click the Extended Button?

Let's take a look at how this functionality is set up by taking a look at what happens when we
click the Extended button. The attached Action Listener in SampleFrame.java calls the
onExtendedOrder() method, also in SampleFrame, and onExtendedOrder() in turn
displays the Extended Order dialog, shown below.
Getting Started with the TWS Java API 71

Orders and Executions
Chapter 15: Extended Order Attributes
The fields in this dialog are actually attributes of the Order class, which is called in the
placeOrder() method.

So this time, within the onExtendedOrder() method, we call the private
copyExtendedOrderDetails() method, also in SampleFrame.
copyExtendedOrderDetails() copies the values you enter in this dialog to the parameters to
the EClientSocket Order class when you click OK in the Extended Order dialog.

That's all the Extended button does. Until you place an order, the extended attributes are just
that - static, sitting, lazy, waiting attributes. But once you create and place an order, the
values you entered/modified in the Extended Order dialog are used in your order, and will
continue to be applied to every order until you change them.

onExtendedOrder() Method in SampleFrame.java

void onExtendedOrder() {
//Show the extended order attributes dialog
m_extOrdDlg.show();
if(!m_extOrdDlg.m_rc) {

return;
}
// Copy over the extended order details
copyExtendedOrderDetails(m_orderDlg.m_order,

m_extOrdDlg.m_order);
}

copyExtendedOrderDetails() Method in SampleFrame.java

private void copyExtendedOrderDetails(Order destOrder, Order
srcOrder)
Getting Started with the TWS Java API 72

Orders and Executions
Chapter 16: Requesting Open Orders
Chapter 16: Requesting Open Orders
In this chapter, we're going to take a look at three related methods/buttons in the sample
application:

• Request Open Orders

• Request All Open Orders

• Request Auto Open Orders

How are they related?

Well, obviously they all give you information about open orders. The difference between them
is the Client ID, which you set (or not!) when you connect to TWS.

Running Multiple API Sessions

You can connect up to eight API sessions to one TWS client, but the catch is that you have to
assign a new client ID for each API session. Therefore, any orders sent from these clients can
be tracked through the life of the order, and everyone knows where they came from and who's
responsible for them. So be careful!:

If you happen to have TWS up and running now and want to try this out, simply run multiple
sample API sessions as described in the following steps:

1 Click the Connect button and connect to the first session. Note that the Client ID is set
to "0."

2 Do the same for another session. If you don't change anything, you'll see that you are
not able to connect to this second session. In the Errors and Messages text panel on the
sample application, the API will kindly tell you "Already connected."

3 Now try it with a unique Client ID. Click Connect again, only this time type 1 (or any
other unique Client ID) in the Client ID field, then click OK.
Getting Started with the TWS Java API 73

Orders and Executions
Chapter 16: Requesting Open Orders
The Difference between the Three Request Open Orders Buttons

Now you're ready to learn the difference between the three Request Open Orders
methods/buttons:

• Request Open Orders shows you any open orders made from that client, and if it's the
"0" client ID client, you'll also see open orders sent from TWS.

• Request All Open Orders method shows you open orders sent from ALL clients
connected to TWS, and all open orders that were sent from that TWS.

• Request Auto Open Orders method can only be used by the API with the client ID of
"0." Clicking this button sets the boolean parameter to "True" and forever binds TWS
orders to the API client. From that day forward, any time an open order exists on TWS
it will automatically be returned via the Ewrapper methods, and in this case be
displayed in the TWS Server Responses text panel of the sample application.

Got all that? Good, let's see the details.

What Happens When I Click the Req Open Orders Button?

When you click the Req Open Orders button, the attached Action Listener in
SampleFrame.java calls the onReqOpenOrders() method, also in SampleFrame, and shown
below.

The onReqOpenOrders() method calls the API EClientSocket reqOpenOrders() method.

The reqOpenOrders() Method

The reqOpenOrders() method gets all open orders that were sent from your API client, and
if you have a Client ID of "0" it gets the TWS orders as well.

The open order information is returned via the openOrder() and orderStatus() methods,
which are defined in the EWrapper interface.

In the Java Test Client sample application, you will see the open order info displayed in the
TWS Server Responses text panel.

onReqOpenOrders() Method in SampleFrame.java

void onReqOpenOrders() {
m_client.reqOpenOrders();

}

public synchronized void reqOpenOrders()
Getting Started with the TWS Java API 74

Orders and Executions
Chapter 16: Requesting Open Orders
What Happens When I Click the Req All Open Orders Button?

When you click the Req All Open Orders button, the attached Action Listener in
SampleFrame.java calls the onReqAllOpenOrders() method, also in SampleFrame, as
shown below.

The onReqAllOpenOrders() method calls the API EClientSocket reqAllOpenOrders()
method.

The reqAllOpenOrders() Method

The reqAllOpenOrders() method gets all open orders that were sent from your API client,
and if you have a Client ID of "0" it gets the TWS orders as well.

If you only have a single API client running, nothing will happen when you click this button.
It's only useful if you are running multiple API clients off the same TWS session. In that case,
this method gets all open orders from all clients and TWS, and returns them via the
openOrder() and orderStatus() methods, which are defined in the EWrapper interface.

In the Java Test Client sample application, you will see the open order information displayed in
the TWS Server Responses text panel.

onReqAllOpenOrders() Method in SampleFrame.java

void onReqAllOpenOrders() {
// request list of all open orders
m_client.reqAllOpenOrders();

}

public synchronized void reqAllOpenOrders()
Getting Started with the TWS Java API 75

Orders and Executions
Chapter 16: Requesting Open Orders
What Happens When I Click the Req Auto Open Orders Button?

Last but not least is the Req Auto Open Orders button. When you click this button, , the
attached Action Listener in SampleFrame.java calls the onReqAllOpenOrders() method, also
in SampleFrame, as shown below.

The onReqAllOpenOrders() method calls the API EClientSocket reqAutoOpenOrders()
method.

The reqAutoOpenOrders() Method

This method has a single parameter:

• bAutoBind: If set to TRUE, newly created TWS orders will be associated with the client.
If set to FALSE, no association will be made.

As we mentioned above, the onReqAutoOpenOrders() method calls the
reqAutoOpenOrders() method in EClientSocket and sets the bAutoBind parameter in that
method to true. That is, if you are using an API with a Client ID of "0." Otherwise you'll receive
an error message and the auto binding won't be enabled.

But if your Client ID is "0", you have just bound all future TWS open orders to your client. This
means that any time an order is sent from that TWS it will automatically be fed back through
the EWrapper methods and show up like magic in the TWS Server Responses text panel.

In the Java Test Client sample application, you will see the open order information displayed in
the TWS Server Responses text panel.

onReqAutoOpenOrders() Method in SampleFrame.java

void onReqAutoOpenOrders() {
// request to automatically bind any newly entered TWS orders
// to this API client. NOTE: TWS orders can only be bound to
// client's with clientId=0.
m_client.reqAutoOpenOrders(true);

}

public synchronized void reqAutoOpenOrders()
Getting Started with the TWS Java API 76

Orders and Executions
Chapter 17 Requesting Executions
Chapter 17 Requesting Executions
This chapter shows you how to request execution reports using the Filter Criteria dialog in the
Java Test Client sample application. You can retrieve all execution reports, or only those you
want by entering specific criteria such as time, symbol, exchange and more. We'll show you
the methods and parameters behind the sample application, and how they call the methods in
the TWS Java API.

What Happens When I Click the Req Executions Button?

When you click the Req Executions button, the attached Action Listener in
SampleFrame.java calls the onReqExecutions() method, also in SampleFrame.

The onReqExecution() method displays the Execution Filter dialog shown below:

onReqExecutions() Method in SampleFrame.java

void onReqExecutions() {
ExecFilterDlg dlg = new ExecFilterDlg(this);
dlg.show();
if (dlg.m_rc) {

// request execution reports based on the supplied filter
criteria

m_client.reqExecutions(dlg.m_execFilter);
}

}

Getting Started with the TWS Java API 77

Orders and Executions
Chapter 17 Requesting Executions
Note that the Client ID field comes with a default value of "0." This isn't by chance! You can
leave all of the other fields blank and everything will be fine. But if you leave the Client ID field
blank, you'll get nothing, no matter what other field values you may enter. After you define
the filter criteria and click OK, we make a call to the reqExecutions() method in the Java
API's EClientSocket.

The reqExecutions() Method

The reqExecutions() method in EClientSocket sends the values you entered in the Execution
Filter dialog to TWS. Another way of saying this is that the filter criteria you entered in the
Execution Filter dialog are the parameters for this method.

The execDetails() Method

The execution data are returned via the execDetails() method in the Java API EWrapper
interface.

As you can see from the method declaration above, the execDetails() method contains the
following parameters:

Tables are for illustrative purposes only and are not intended to represent valid API information.

In the Java Test Client sample application, you will see the execution information you
requested displayed in the TWS Server Responses text panel:

public synchronized void reqExecutions(ExecutionFilter filter)

void execDetails(int orderId, Contract contract, Execution
execution)

Parameter Description

orderId The order Id that was specified previously in the call to
placeOrder().

contract This structure contains a full description of the contract that
was executed.

execution This structure contains addition order execution details.
Getting Started with the TWS Java API 78

6
Additional Tasks

This section describes some additional tasks that you can perform using the Java API sample
application. We'll show you the methods, events and parameters behind such tasks as
requesting the current server time, the next ID, subscribing and unsubscribing to news
bulletins, and changing the server logging level.

Here's what you'll find in this section:

• Chapter 18 - Requesting the Current Time

• Chapter 19: Subscribing to News Bulletins

• Chapter 20: View and Change the Server Logging Level

In addition to the tasks described in this chapter, the Java API sample
application also includes a few more advanced functions, including the
ability to calculate volatility and option price, and support for IBAlgos.
For more information on these and other advanced capabilities of the
Java API, see our API Reference Guide, available from the Reference

Guide tab on our IB API web page.
Getting Started with the TWS Java API 79

Additional Tasks
Chapter 18 - Requesting the Current Time
Chapter 18 - Requesting the Current Time
This chapter discusses the method for requesting the current system time. Actually,
"discusses" is really not the correct word. It merely "states" the method, which is quite solitary
with no parameters to call its own.

What Happens When I Click the Req Current Time Button?

When you click the Req Current Time button, the attached ActionListener calls the method
onScanner().

onReqCurrentTime() method, shown below, is called, and within that method, without ever
displaying that Order Dialog, we make a call to API EClientSocket reqCurrentTime() method,
which sends a request to TWS for the current server time.

Some methods have no parameters, but they're included anyway. The EClientSocket
reqCurrentTime() method is one of these methods. It has no parameters; it simply request
the current server time. The reqCurrentTime() method looks like this:

The time is returned by the EWrapper method currentTime(), which as you might have
already suspected, contains only one parameter: time. The currentTime() method looks like
this:

Time's up! Actually, we should probably request the current time before we jump to that
conclusion. But it IS time to move on to the order-related methods, regardless of what the
EWrapper has to say!

ActionListener for the Req Current Time button in createButtonPanel()

JButton butCurrentTime = new JButton("Req Current Time");
butCurrentTime.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
onReqCurrentTime();

onReqCurrentTime() Method

void onReqCurrentTime() {
m_client.reqCurrentTime();
}

void reqCurrentTime()

void currentTime(long time)
Getting Started with the TWS Java API 80

Additional Tasks
Chapter 19: Subscribing to News Bulletins
Chapter 19: Subscribing to News Bulletins
This chapter shows you how to subscribe to IB news bulletins through the Java Test Client.
Once you subscribe, all bulletins will display in the TWS Server Responses text panel of the
sample application. The news bulletins keep you informed of important exchange disruptions.

We will show you the methods and parameters behind the news bulletin feature of the Java
Test Client sample application, and how they call the methods in the TWS Java API.

What Happens When I Click the Req News Bulletins Button?

When you click the Req News Bulletin button, the attached Action Listener in
SampleFrame.java calls the onReqNewsBulletins() method, also in SampleFrame.

The onReqNewsBulletins() method displays the News Bulletin Subscription dialog shown
below.

When you click Subscribe in this dialog, we call the Java API EclientSocket
reqNewsBulletins() method.

onReqNewsBulletins() Method in SampleFrame.java

void onReqNewsBulletins() {
// run m_newsBulletinDlg
m_newsBulletinDlg.show();
if(!m_newsBulletinDlg.m_rc) {

return;
}
if (m_newsBulletinDlg.m_subscribe) {

m_client.reqNewsBulletins(m_newsBulletinDlg.m_allMsgs);
}
else {

m_client.cancelNewsBulletins();
}

}

Getting Started with the TWS Java API 81

Additional Tasks
Chapter 19: Subscribing to News Bulletins
The reqNewsBulletins() method

This EClientSocket method tells TWS that you want to subscribe to news bulletins.

reqNewsBulletins() has one parameter: allMsgs. If you click the receive new messages only
radio button in the News Bulletin Subscription dialog, the allMsgs parameter, which asks
"receive ALL messages, old and new?" will be set to false, which basically means "no,
thanks!". If you select receive all the current day's messages and any new messages, the
allMsgs parameter gets set to true, which means, "yes, please!" Pretty cool, right? Either way,
you are now subscribed to news bulletins, and either way you will receive any NEW bulletins
that get posted from the time you subscribe.

The updateNewsBulletin() Method

The bulletins are returned via the updateNewsBulletin() method in the Java API EWrapper
interface. The header for this method is shown below.

updateNewsBulletin() contains the following parameters:

Tables are for illustrative purposes only and are not intended to represent valid API information.

public synchronized void reqNewsBulletins(boolean allMsgs)

void updateNewsBulletin(int msgId, int msgType, String message,
String origExchange)

Parameter Description

msgId The bulletin ID, incrementing for each new bulletin.

msgType Specifies the type of bulletin. Valid values include:

• 1 = Reqular news bulletin

• 2 = Exchange no longer available for trading

• 3 = Exchange is available for trading

message The bulletin's message text.

origExchange The exchange from which this message originated.
Getting Started with the TWS Java API 82

Additional Tasks
Chapter 19: Subscribing to News Bulletins
Canceling News Bulletins

If you're tired of knowing what's going on around you, you can elect to unsubscribe, or cancel
the news bulletins. To unsubscribe to news bulletin, you first need to click the Req News
Bulletins button in the Java Test Client sample application. Then you click Unsubscribe in
the News Bulletin Subscription dialog, and we call the EClientSocket cancelNewsBulletins()
method, which as the name implies, cancels your news bulletin subscription.

The cancelNewsBulletins() method header looks like this:

Because you are simply canceling a request, there are no values returned by this method.

public synchronized void cancelNewsBulletins()
Getting Started with the TWS Java API 83

Additional Tasks
Chapter 20: View and Change the Server Logging Level
Chapter 20: View and Change the Server
Logging Level

This chapter shows you how to view and change the server logging level.

As client requests are processed (both system and API clients), TWS logs certain information
to its log.txt log file located in the installation directory. The purpose of this file is to help
resolve problems by providing some insight into the state of the program before the problem
occurred. In the Java Test Client sample application, you can specify how detailed the
information will be when entered into the log.txt file. Basically, the higher the log level, the
more performance overhead that may be incurred. By default, the server logging level is set to
"2" for error logging.

See our API Reference Guide for more information about API
logging. The API Reference Guide is available from the Application
Programming Interfaces page on our web site as an online guide
or a downloadable/printable PDF.

What Happens When I Click the Server Logging Button?

Anyway, to see or change the server logging level, you first click the Server Logging button
on the Java Test Client. As with all the other buttons on the sample application, when you click
this button, the attached Action Listener in SampleFrame.java calls the onServerLogging()
method, also in SampleFrame.

The onServerLogging() method displays the Log Configuration dialog shown on the next
page.

onServerLogging() Method in SampleFrame.java

void onServerLogging() {
// get server logging level
LogConfigDlg dlg = new LogConfigDlg(this);
dlg.show();
if(!dlg.m_rc) {

return;
}
// connect to TWS
m_client.setServerLogLevel(dlg.m_serverLogLevel);

}

Getting Started with the TWS Java API 84

Additional Tasks
Chapter 20: View and Change the Server Logging Level

The default level appears in the Log Level field. We've expanded the dropdown list in the
figure above just to show you what log levels you can choose. Once you select a level and click
OK, we call the EClientSocket setServerLogLevel() method.

The setServerLogLevel() Method

The EClientSocket method setServerLogLevel() contains a single parameter, logLevel.

The logLevel parameter specifies the level of log entry detail used by TWS when processing
API requests. The valid values for this parameter correspond to your choices in the Log Level
dropdown in the Log Configuration dialog:

• 1 = SYSTEM

• 2 = ERROR

• 3 = WARNING

• 4 = INFORMATION

• 5 = DETAIL

This concludes our discussion of the Java Test Client sample application for individual
accounts. The next chapter discusses methods used for Financial Advisor and multi-client
accounts.

public synchronized void setServerLogLevel(int logLevel)
Getting Started with the TWS Java API 85

Additional Tasks
Chapter 20: View and Change the Server Logging Level
Getting Started with the TWS Java API 86

7
Sample Applications for the
Java API

We’ve included two samples to help you get a better feel for what you can do with the Java
API. For each sample, we’ve included a description of its primary purpose and a walkthrough
of the actual Java code in the sample. The first sample is very simple, and the second sample
is somewhat more complicated.

The sample code for the examples in this section can be found on our web site at
http://www.interactivebrokers.com/en/p.php?f=programInterface&ib_entity=llc.

The following chapters are included in this section:

• Chapter 21 - Downloading and Preparing the Sample Code

• Chapter 22 - Example 1: Requesting Market Data - In this simple sample program, we
show you how to get the last price for a given symbol.

• Chapter 23 - Example 2: Automating Option Orders - In this sample program, we look
at volatility for a given underlying to determine whether or not to place a straddle order.

In this section, we do not go into detail about Java-specific
programming instructions. In other words, we assume that you
already have experience programming in Java.
Getting Started with the TWS ActiveX API 87

http://www.interactivebrokers.com/en/p.php?f=programInterface&p=a&ib_entity=llc

Sample Applications for the Java API
Chapter 21 - Downloading and Preparing the Sample Code
Chapter 21 - Downloading and Preparing the
Sample Code

This chapter describes how to get the Java code for the samples in this section, and how to
open the samples in NetBeans as a new project.

While you are always free to use your own favorite Java IDE, we’ve
written these sample chapters with NetBeans in mind. Where
necessary, we’ve included minimal instruction on how to set up and
run the samples in NetBeans. Be sure to adapt those instructions to
the Java IDE that you are using.

Download the Samples

Before you dive into our Java samples, you should download the sample code from our
website. We provide a zipped file that includes the Java code for both samples.

To download the TWS Java API samples

1 Click the following link to go to the Application Programming Interfaces page on our
website:

http://individuals.interactivebrokers.com/en/p.php?f=programInterface&p=g&ib_entit
y=lic

2 Click the Proprietary API tab, then click the Getting Started Guide link.

3 Scroll down to the Java API section and save the JavaAPIExamples.zip file to your
computer.

4 Extract the files from the zip file to your computer.

What’s In the Zipped Sample File?

After you unzip the sample zip file, you’ll see the following folders:

We’ve included all of the source files you’ll need to run the samples, including the TWS Java
API. In addition, we’ve included a build file, build.xml, to simplify the build process.
Getting Started with the TWS ActiveX API 88

http://individuals.interactivebrokers.com/en/p.php?f=programInterface&p=a&ib_entity=lic

Sample Applications for the Java API
Chapter 21 - Downloading and Preparing the Sample Code
Setting Up the Project in NetBeans

In this section, we’re going to show you one way to set up a project for the API samples in
NetBeans. We’ll set up a new project using NetBeans’ Java Free-Form Project option. Of
course, you can use any Java IDE to create your java project using our samples.

To set up a new project in NetBeans for the samples

1 Open NetBeans, then select New Project from the File menu.

2 In the New Project dialog, select Java Free-Form Project, then click Next.

3 In the Location field, enter the path to the APIExamples folder created when you
unzipped the Java API samples file. For example, C:\APIExamples.

The Build Script field should be filled automatically with the path to the build.xml file.
For example, C:\APIExamples\build.xml.

4 Enter a project name and project folder in the appropriate fields, or accept the default
project name folder. Set as Main Project is checked by default; you can leave this
setting intact if you want, then click Next.

5 Click Next again to display the Source Package folders screen.

6 Click Add Folder, then browse to the src folder in the APIExamples folder created when
you unzipped the Java API samples file. For example, C:\APIExamples\src.

7 Click Finish.
Getting Started with the TWS ActiveX API 89

Sample Applications for the Java API
Chapter 21 - Downloading and Preparing the Sample Code
8 The APIExample project should look something like this in the Netbeans Projects
window:
Getting Started with the TWS ActiveX API 90

Sample Applications for the Java API
Chapter 21 - Downloading and Preparing the Sample Code
A Quick Look at the New Project

In this section, we’ll briefly look at the source files in the APIExample project. Again, our
descriptions below are based on using Netbeans as the Java IDE, but you are free to use any
Java IDE you prefer.

• com.ib.client - contains our TWS Java API, including all the methods and parameters
and objects you’ll need to connect to TWS.

• com.ib.client.examples - contains the Example 1.java and Example 2.java classes, as
well as ExampleBase.java, which is the base class for both examples. ExampleBase also
implements EWrapper.

• com.ib.client.examples.model - contains the UnderlyingData.java class, which is
used in Example 2.

• com.ib.client.examples.util - contains the DateUtil.java class, which is a date utility
used in Example 2, and the RequestIDManager.java class, which is an ID-request utility
used in Example 2.

• build.xml - This is the build file for the project.

Now that you have the APIExamples project created in NetBeans (or your favorite Java IDE),
you’re ready to take a look at the first sample.
Getting Started with the TWS ActiveX API 91

Sample Applications for the Java API
Chapter 22 - Example 1: Requesting Market Data
Chapter 22 - Example 1: Requesting Market
Data

In this simple sample, we show you how to get the last price for a given symbol.

Run Example 1

Before we take a look at the actual code behind this sample, let’s see what happens when we
run it. This example does not include any GUI elements; when you run the program from
within NetBeans or your favorite Java IDE, it will display in the Output window. To run
Example 1 from NetBeans, select ex1 as your build target.

Example 1 is designed to run on your local computer “out of the
box.” If you receive a connection error when you try to run Example
1, open ExampleBase.java and change the value for TWS HOST =
on line 19 from “localhost” to the IP address where TWS is running.

Note: Any stock or option symbols displayed are for illustrative purposes only and are not intended to portray a recommendation.

As you can see from the preceding figure, Example 1 does the following:

• Establishes a connection with TWS.

• Gets the last price for symbol IBKR (this is the symbol for our own Interactive Brokers,
but you can change the code to get market data for any symbol).

• Closes the connection with TWS.
Getting Started with the TWS ActiveX API 92

Sample Applications for the Java API
Chapter 22 - Example 1: Requesting Market Data
Now let’s take a look at the code behind this simple example.

What Happens When You Run Example 1?

You’ve seen Example 1 run, but what’s really happening when you run it? Let’s take a quick
look.

1 Example1.java runs.

2 Example1 connects to TWS by calling the connectToTWS() method defined in
ExampleBase.java. The connection parameters are also defined in ExampleBase.

3 Example1 creates a contract by calling the createContract() method, which is defined
in ExampleBase.java with default values. The symbol, IBKR, is defined in the build file,
build.xml.

4 Example1 implements the tickPrice() TWS Java API Ewrapper method in order to get
the last price for the symbol IBKR (or whatever symbol you define as the command line
argument).

5 Example1 runs a while loop that checks for the last price every one second, then
displays the last price in the output if the time it takes to get the value from TWS is less
than a MAX_WAIT_COUNT value, which is set in ExampleBase.

6 If it takes more than 15 seconds to get the last price from TWS, the program reports an
error, then disconnects from TWS.

7 If the program is succesful, the last price for the symbol defined as the command line
argument is reported in the output, then the program disconnects from TWS.

That’s the basic process. Example1 uses the following TWS Java API EClientSocket methods:

• eConnect()

• reqMktData()

• eDisconnect()

and this TWS Java API EWrapper method:

• tickPrice()

Now we’re going to get into the details of each step.
Getting Started with the TWS ActiveX API 93

Sample Applications for the Java API
Chapter 22 - Example 1: Requesting Market Data
Looking at Example1.java

Here’s what happens in Example1.java:

• The first thing that Example1.java does when it runs is import the Contract and
TickType SocketClient properties from our Java API. Contract contains attributes used
to describe a contract, including symbol, security type, exchange and currency.
TickType defines the values for the tickType parameter, which the sample program uses
to retrieve the last price of the specified symbol:

• Next, Example1 extends ExampleBase and initializes the symbol, requestID and
lastPrice attributes. Note that in our sample code, ExampleBase is a Thread, and
therefore Example1 is by inheritance.

• The code then sets the Example1 constructor and sets the symbol variable:

• Example1 then declares the main method, which sets a single argument, creates a
message that displays only if there is no symbol defined as the command line
argument, and calls start, which automatically calls the run() method because it’s in a
thread:

import com.ib.client.Contract;
import com.ib.client.TickType;

public class Example1 extends ExampleBase {
 private String symbol = null;
 private int requestId = 0;
 private double lastPrice = 0.0;

public Example1(String symbol) {
 this.symbol = symbol;
 }

public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println(" Usage: java Example1 <symbol>");
 System.exit(1);
 } else {
 new Example1(args[0]).start();
 }
 }
Getting Started with the TWS ActiveX API 94

Sample Applications for the Java API
Chapter 22 - Example 1: Requesting Market Data
• As described in the preceding bullet, Example1 next calls the run() method. This
method uses a Java try Block to connect to TWS, create a contract, request snapshot
market data, runs a while loop that that checks for the last price every one second and
either reports an error or displays the last price of the specified symbol, and finally
disconnects from TWS:

If you’re not sure what a Thread or a try Block is in Java, we strongly
recommend that you look these concepts up in your favorite Java
programming book or on Sun’s Java website before you continue.

public void run() {
try {

boolean isSuccess = false;
int waitCount = 0;

// Make connection
connectToTWS();

// Create a contract, with defaults...
Contract contract = createContract(symbol, "STK", "SMART",

"USD");

// Requests snapshot market data
eClientSocket.reqMktData(requestId++, contract, null, true);

while (!isSuccess && waitCount < MAX_WAIT_COUNT) {
// Check if last price loaded

if (lastPrice != 0.0) {
 isSuccess = true;

}

if (!isSuccess) {
 sleep(WAIT_TIME); // Pause for 1 second
 waitCount++;

}
}

// Display results
if (isSuccess) {

System.out.println(" [Info] Last price for " + symbol + " was:
" + lastPrice);

 } else {
 System.out.println(" [Error] Failed to retrieve last price

for " + symbol);
}

} catch (Throwable t) {
System.out.println("Example1.run() :: Problem occurred during

processing: " + t.getMessage());
} finally {

disconnectFromTWS();
}

}

Getting Started with the TWS ActiveX API 95

Sample Applications for the Java API
Chapter 22 - Example 1: Requesting Market Data
• Example1 also implements our tickPrice() Ewrapper method, setting the lastPrice
variable:

Now let’s dive even deeper into the code by taking a look at what’s inside the run() method.

Connecting to TWS

The first thing that the run() method inside Example1 does is to initiate a try Block, which
begins by declaring the following local variables:

• isSuccess - This is a boolean variable that is initially set to false. You can see this
variable in action in the while loop.

• waitCount - This integer is initially set to 0. You will also see this variable used in the
while loop.

The run() method inside Example1 includes these lines of code:

The connectToTWS() method, which is NOT part of our TWS Java API, is defined in
ExampleBase:

As you can see from the code, ExampleBase is a Thread that extends the TWS Java API
EWrapper, then sets the values of these connection parameters:

• TWS_HOST - This is the host name or IP address of the machine where TWS is running.
If you leave this parameter blank, localhost will be used.

• TWS_PORT - This is the port specified in the API Socket Port field in TWS’ API
Configuration screen

public void tickPrice(int tickerId, int field, double price, int
canAutoExecute) {
 if (field == TickType.LAST) {
 lastPrice = price;
 }
 }
}

// Make connection
connectToTWS();

public abstract class ExampleBase extends Thread implements EWrapper {
 protected EClientSocket eClientSocket = new EClientSocket(this);
 protected final static String TWS_HOST = "localhost";
 protected final static int TWS_PORT = 7496;
 protected final static int TWS_CLIENT_ID = 1;
 protected final static int MAX_WAIT_COUNT = 15; // 15 secs
 protected final static int WAIT_TIME = 1000; // 1 sec

 protected void connectToTWS() {
 eClientSocket.eConnect(TWS_HOST, TWS_PORT, TWS_CLIENT_ID);
 }
Getting Started with the TWS ActiveX API 96

Sample Applications for the Java API
Chapter 22 - Example 1: Requesting Market Data
• TWS_CLIENT_ID - This is the number TWS uses to identify the client connection.
Remember that each client must connect with a unique client ID.

These are the parameters in the eClientSocket eConnect() method. ExampleBase also sets
the values of MAX_WAIT_COUNT and WAIT_TIME, which we’ll see are used in the while loop in
Example1.

After setting the values of these parameters, ExampleBase calls the EClientSocket
eConnect() method, including the three connection parameters.

Example 1 is designed to run on your local computer “out of the
box.” If you receive a connection error when you try to run Example
1, change the value for TWS HOST = on line 19 in ExampleBase
from “localhost” to the IP address where TWS is running.

Creating a Contract

The next thing that the run() method in Example1 does is to create a contract object
containing four parameters:

// Create a contract, with defaults...
Contract contract = createContract(symbol, "STK", "SMART", "USD");
Getting Started with the TWS ActiveX API 97

Sample Applications for the Java API
Chapter 22 - Example 1: Requesting Market Data
It creates the contract by calling the createContract() overloaded method in ExampleBase.
Note that this method is not part of our TWS Java API.

The parameters included in this method are listed below.

• symbol - This variable is initialized in Example1.java, but the value is set in the
build.xml build file. In our sample, we use IBKR.

• securityType - The value for this parameter is set to STK (for stock) in the Example1 call
to the createContract() method.

• exchange - The value for this parameter is set to SMART (for IBSmartRouting) in the
Example1 call to the createContract() method.

• currency - The value for this parameter is set to USD (for US dollars) in the Example1
call to the createContract() method.

This method uses the TWS Java API Contract SocketClient
property but only makes use of a few of the attribues in that object.
For a complete list of all of the attributes in the Contract object, see
the API Reference Guide. You could modify the code in our sample
to retrieve market data for an option instead a stock by changing

createContract() Method

protected Contract createContract(String symbol, String
securityType, String exchange, String currency) {

return createContract(symbol, securityType, exchange,
currency, null, null, 0.0);

}

protected Contract createContract(String symbol, String
securityType, String exchange, String currency, String expiry,
String right, double strike) {

Contract contract = new Contract();

contract.m_symbol = symbol;
contract.m_secType = securityType;
contract.m_exchange = exchange;
contract.m_currency = currency;

if (expiry != null) {
 contract.m_expiry = expiry;

}

if (strike != 0.0) {
 contract.m_strike = strike;

}

if (right != null) {
 contract.m_right = right;

}

return contract;
}

Getting Started with the TWS ActiveX API 98

http://individuals.interactivebrokers.com/php/apiUsersGuide/apiguide/java/contract.htm

Sample Applications for the Java API
Chapter 22 - Example 1: Requesting Market Data
the value of the securityType parameter in createContract() and using
additional Contract attributes such as m_expiry, m_strike and m_right.

Getting a Snapshot of Market Data

The next task performed by the run() method in Example1.java is requesting a snapshot of
market data:

Notice that this bit of code is calling the reqMktData() EClientSocket method, which IS part
of our TWS Java API. The parameters are:

• requestID - This is a unique value used to identify this market data request. Here we
are simply automatically incrementing the request ID numbers. You can also use a
specific number for this parameter, such as 1, instead of our little automation.

• contract - This is the Contract SocketClient object that contains attributes that describe
the contract that we’ve already defined. In our sample, remember that we’re looking for
market data for IBKR.

• genericTicklist - This is set to null, which means that we’re not using this parameter in
this sample program.

• snapshot - This boolean parameter is set to true here, which tells TWS to return a
single snapshot of market data instead of data that dynamically updates. When you use
snapshot (set the parameter to true), you cannot enter any values for genericTicklist.

The while Loop

The run() method starts out by declaring a pair of local variables, isSuccess and waitCount.
We use this variables in the while loop that is part of the code that gets the last price of the
specified contract.

// Requests snapshot market data
eClientSocket.reqMktData(requestId++, contract, null, true);
Getting Started with the TWS ActiveX API 99

Sample Applications for the Java API
Chapter 22 - Example 1: Requesting Market Data
In addition to these variables, the while loop also uses MAX_WAIT_COUNT and WAIT_TIME to
evaluate whether or not to display the last price of the specified contract.

The while loop checks for the last price every one second, then displays the last price in the
output if the time it takes to get the value from TWS is less than the value of
MAX_WAIT_COUNT value, which is set to 15 seconds in ExampleBase. If it takes 15 seconds
or less to retrieve the last price of the specified stock, that price is displayed in the output
when the program runs. If it takes longer than 15 seconds to get the last price from TWS, the
error message indicated in the preceding code snippet is displayed, then the program
disconnects from TWS. You can change this wait time to a value longer or shorter than 15
seconds by changing the value of MAX_WAIT_COUNT in ExampleBase.java.

Getting the Last Price

The piece of code that actually sets the last price of the specified contract is the tickPrice()
EWrapper method, which appears at the very end of Example1.java:

tickPrice() has four parameters:

• tickerId - This is the ID that was previously specified in the reqMktData() method.

• field - This parameter specifies the type of price to retrieve. In our sample, we want to
retrieve the LAST price, but we could just as easily specified the bid, ask, high or low, as
well as any other type of price that is defined in the TickType object.

• price - This parameter holds the price for the price type specified in field.

while (!isSuccess && waitCount < MAX_WAIT_COUNT) {
// Check if last price loaded
if (lastPrice != 0.0) {
 isSuccess = true;
}
if (!isSuccess) {
 sleep(WAIT_TIME); // Pause for 1 second
 waitCount++;
}

}
// Display results
if (isSuccess) {
System.out.println(" [Info] Last price for " + symbol + "

was: " + lastPrice);
 } else {
 System.out.println(" [Error] Failed to retrieve last price

for " + symbol);
}

public void tickPrice(int tickerId, int field, double price, int
canAutoExecute) {
 if (field == TickType.LAST) {
 lastPrice = price;
 }
 }
}

Getting Started with the TWS ActiveX API 100

Sample Applications for the Java API
Chapter 22 - Example 1: Requesting Market Data
• canAutoExecute - This is a boolean parameter that specifies whether the price tick is
eligible for automatic execution. A value of 0 (zero) indicates that the the price tick is
NOT eligible; a value of 1 indicates that the price tick IS eligible.

The last piece of this code snippet contains an if statement that sets the lastPrice attribute
(that was initialized at the beginning of Example1.java) to the price parameter in tickPrice()
if the field parameter is set to LAST. tickPrice() typically returns a series of prices from TWS:
bid, ask, last, and so on. This if statement basically means that as soon the last price is sent
from TWS, the lastPrice attribute in our sample code is set to that last price from TWS. Our
sample is only interested in the last price.

Disconnecting from TWS

The try Block ends by disconnecting the sample program from TWS:

As you can see, we’re calling the disconnectFromTWS() method, which is defined in
ExampleBase:

This code calls the EClientSocket eDisconnect() method if the EClientSocket isConnected()
method is running. isConnected() checks to see if there is a connection with TWS;
eDisconnect() simply disconnects from TWS.

For descriptions of all of the EClientSocket methods in our TWS Java API, see the
API Reference Guide.

The build.xml Build File

Last but not least, our example programs include a build file, build.xml. It is in this file that we
specify the specific contract symbol whose last price we are interested in getting. In our
sample, we’ve set that to IBKR (Interactive Brokers of course), but you can test the program
out with any symbol you like. Go ahead and try changing this value on line 40 in the build file.

If you’re not familiar with build files, we recommend looking for more
information about Ant or on Sun’s Java website.

This concludes our discussion of the first of two sample programs that we have provided. In
the next chapter, we take a look at the second sample program, which is more complicated
than Example 1.

finally {
disconnectFromTWS();

protected void disconnectFromTWS() {
 if (eClientSocket.isConnected()) {
 eClientSocket.eDisconnect();
Getting Started with the TWS ActiveX API 101

http://individuals.interactivebrokers.com/php/apiUsersGuide/apiguide/java/java_eclientsocket_methods.htm

Sample Applications for the Java API
Chapter 23 - Example 2: Automating Option Orders
Chapter 23 - Example 2: Automating Option
Orders

In this sample, we request market data for a given underlying, then automatically place a buy
straddle order for options based on implied volatility and historical volatility.

Run Example 2

Before we take a look at the actual code behind this sample, let’s see what happens when we
run it. This example does not include any GUI elements; when you run the program from
within NetBeans or your favorite Java IDE, it will display in the Output window. To run
Example 2 from NetBeans, select ex2 as your build target.

Example 2 is designed to run on your local computer “out of the
box.” If you receive a connection error when you try to run Example
2, open ExampleBase.java and change the value for TWS HOST =
on line 19 from “localhost” to the IP address where TWS is running.
Getting Started with the TWS ActiveX API 102

Sample Applications for the Java API
Chapter 23 - Example 2: Automating Option Orders
As you can see from the preceding figure, Example 2 does the following:

• Establishes a connection with TWS.

• Gets the last price, option implied volatility and option historical volatility for IBKR,
which is the underlying in this sample.

• Checks the minimum implied volatility and the implied volatility-to-historical volatility
ratio of the underlying to see if these values are within specified limits. The values for
minimum implied volatility and the implied volatility-to-historical volatility ratio in our
example code are specified in the build file, build.xml.

• If the values are not within specified limits, displays a message instead of placing the
straddle order.

• If the values are within specified limits, gets all available options for the underlying and
filters the options to get the one with the price closest to the last price of the underlying
and with an expiry of at least 15 days from the current date.

• Places a straddle order for the option that meets the filter criteria.

• Closes the connection with TWS.

In our Example 2, we set the values for minimum implied volatility and the implied
volatility-to-historical volatility ratio as command line arguments (in our sample,
we’ve set these values in the build file). In the real world, however, it is up to you
to figure out your own calculations on which to base such option order automation.

Now let’s take a look at the code behind this example.

What Happens When You Run Example 2?

You’ve seen Example 2 run, but what’s really happening when you run it? Let’s take a quick
look.

1 Example2.java runs.

2 Example2 connects to TWS by calling the connectToTWS() method defined in
ExampleBase.java. The connection parameters are also defined in ExampleBase.

3 Example2 calls the retrieveUnderlyingData() method defined in Example2.java,
which creates a contract by calling the createContract() method defined in
ExampleBase.java with default values, then calls the TWS Java API EClientSocket
method reqMktData() to request market data, using RequestIDManager.java to keep
track of request IDs. The symbol, IBKR, is a command line argument.

4 Example2 implements the tickPrice() TWS Java API Ewrapper method to getthe last
price for the symbol IBKR (or whatever symbol you specify) from TWS, and the
tickGeneric() TWS Java API Ewrapper method to get the option implied volatility and
option historical volatility for the symbol.

5 retrieveUnderlyingData() runs a while loop that checks for the last price, option
implied volatility and option historical volatility every one second, then displays the
prices in the output if the time it takes to get the value from TWS is less than a
MAX_WAIT_COUNT value, which is set in ExampleBase.
Getting Started with the TWS ActiveX API 103

Sample Applications for the Java API
Chapter 23 - Example 2: Automating Option Orders
6 If it takes more than 15 seconds to get the three values from TWS, the program reports
an error, then disconnects from TWS. If the program is succesful, it stores the prices in
UnderlyingData.java.

7 UnderlyingData.java implements two methods, isDataReady(), which checks to see if
the price data has been set, and isOrderCriteria(), which checks the data to see if
meets the program’s criteria for placing a straddle order. This initial criteria is based on
two additional values, minimum implied volatility (minImpVol) and volRatioLimit, which
are command line arguments.

8 If the criteria is not met, a message is displayed in the output and the program
disconnects from TWS.

9 If the criteria is met, Example2 runs the retrieveOptionContracts() method, which
finds all available option contracts for the underlying symbol.

10 Once all the option contracts have been found, Example2 runs the filterContracts()
method, which finds all options with underlying prices as close to the original
underlying’s last price as possible. filterContracts() then finds the option with the
expiry date that is at least 15 days from today (the date the program is run).

11 RequestIDManager.java checks to make sure the next order ID is ready, then a straddle
order is placed using the TWS Java API placeOrder() method, actually placing a
market buy order for a call option and a second market buy order for a put option.

12 The program finally waits for TWS Java API Ewrapper method orderStatus() to return
the order status to the output, then disconnects from TWS.

That’s the basic process. Example2 uses the following TWS Java API EClientSocket methods:

• eConnect()

• reqMktData()

• cancelMktData()

• reqContractDetails()

• eDisconnect()

• placeOrder()

and the following TWS Java API EWrapper methods:

• tickPrice()

• tickGeneric()

• contractDetails()

• contractDetailsEnd()

• orderStatus()

• nextValidId()

Now lets go into the details of each step.
Getting Started with the TWS ActiveX API 104

Sample Applications for the Java API
Chapter 23 - Example 2: Automating Option Orders
Looking at Example2.java

Here’s what happens in Example2.java:

• The first thing that Example2.java does when it runs is import several SocketClient
properties from our Java API: Contract, Contract Details, Order, TickType. Contract
contains attributes used to describe a contract, including symbol, security type,
exchange and currency. Contract Details contains additional attributes that describe a
contract, including valid order types and exchanges, and bond details. Order contains
attributes that describe an order. TickType defines the values for the tickType
parameter, which the sample program uses to retrieve the last price of the specified
symbol. Example2 also imports EWrapperMsgGenerator, which creates messages for a
variety of data. Example2.java also imports the UnderlyingData, DateUtil and
RequestIDManager, which are included in the additional sources for the examples:

• Next, Example2 extends ExampleBase and initializes GENERIC_TICKS, UnderlyingData
and a list of option contracts. Note that in our sample code, ExampleBase is a Thread,
and so Example2 is one by inheritance.

• The code then sets the Example2 constructor and sets the underlyingData variable.

import com.ib.client.Contract;
import com.ib.client.Contract;
import com.ib.client.ContractDetails;
import com.ib.client.EWrapperMsgGenerator;
import com.ib.client.Order;
import com.ib.client.TickType;
import com.ib.client.examples.model.UnderlyingData;
import com.ib.client.examples.util.DateUtil;
import com.ib.client.examples.util.RequestIDManager;
import java.util.ArrayList;
import java.util.ArrayList;
import java.util.List;

public class Example2 extends ExampleBase {

private final static String GENERIC_TICKS = "104, 106"; // Hist
 Vol, Imp Vol
private UnderlyingData underlyingData = null;
private List<Contract> optionContracts = new ArrayList<Contract>();

public Example2(String symbol, String minImpVol, String volRatioLimit)
{

this.underlyingData = new UnderlyingData(symbol,
 Double.parseDouble(minImpVol), Double.parseDouble(volRatioLimit));

}

Getting Started with the TWS ActiveX API 105

Sample Applications for the Java API
Chapter 23 - Example 2: Automating Option Orders
• Example2 then declares the main method, which sets three arguments, creates a
message that displays only if there is no symbol, minImpVol and volRatioLimit defined,
and calls start, which automatically calls the run() method because it’s a Thread:

• As described in the preceding bullet, Example2 next calls the run() method. This
method connects to TWS and calls retrieveUnderlyingData(), which creates a
contract, requests market data, runs a while loop that checks for the three prices every
one second and reports an error or displays the prices, then checks the data to see if
the price data has been set and if it meets the program criteria for placing a straddle
order. If the criteria is not met, a message is displayed in the output and the program
disconnects from TWS. If the criteria is met, run() calls the
retrieveOptionContracts() method, which finds all available option contracts for the
underlying symbol and then, once all the option contracts have been found, runs the
filterContracts() method, which finds all options with underlying prices as close to the
original underlying’s last price as possible, and the option with the expiry date that is at
least 15 days from today (the date the program is run). RequestIDManager.java checks
to make sure the next order ID is ready, then run() places a straddle order using the
TWS Java API placeOrder() method, actually placing a market buy order for a call
option and a second market buy order for a put option. The program finally calls TWS
Java API Ewrapper method orderStatus() to return the order status to the output,
then disconnects from TWS.

The run() method code is shown on the next page.

public static void main(String[] args) {
if (args.length != 3) {

System.out.println(" Usage: java Example2 <symbol> <minImpVol>
 <volRatioLimit>");
System.exit(1);

} else {
new Example2(args[0], args[1], args[2]).start();

}
}

Getting Started with the TWS ActiveX API 106

Sample Applications for the Java API
Chapter 23 - Example 2: Automating Option Orders
public void run() {
try {
connectToTWS();

// Retrieve underlying data (last price, hist vol, imp vol)
if (retrieveUnderlyingData()) {

if (underlyingData.isOrderCriteriaMet()) {
// Retrieve option contracts for underlying
if (retrieveOptionContracts()) {

// Find the one that is 1) closest strike to underlying last
price, 2) expiry not within 15 days

Contract callContract = filterContracts("C");
Contract putContract = filterContracts("P");

if (RequestIDManager.singleton().isOrderIdInitialized()) {
// Place buy straddle for 1 contract as market order
Order callOrder = createOrder("BUY", 1, "MKT");
Order putOrder = createOrder("BUY", 1, "MKT");

eClientSocket.placeOrder(RequestIDManager.singleton().
getNextOrderId(), callContract, callOrder);

eClientSocket.placeOrder(RequestIDManager.singleton().
getNextOrderId(), putContract, putOrder);

System.out.println(" [Info] Buy straddle market order
submitted for: " + underlyingData.toString());

sleep(WAIT_TIME * 30); // Hang around for order status updates...
} else {
System.out.println(" [Error] Failed to initialize order ID
for: " + underlyingData.toString());

}
} else {
System.out.println(" [Error] Failed to retrieve option contracts
for: " + underlyingData.toString());

}
} else {
System.out.println(" [Info] Underlying does NOT meet order
criteria:" + underlyingData.toString());
}

} else {
System.out.println(" [Error] Failed to retrieve underlying data:
" + underlyingData.toString());

}
} catch (Throwable t) {

System.out.println(" [Error] Example1.run() :: Problem occurred
 during processing: " + t.getMessage());

} finally {
disconnectFromTWS();

}
}

Getting Started with the TWS ActiveX API 107

Sample Applications for the Java API
Chapter 23 - Example 2: Automating Option Orders
If you’re not sure what a Thread is in Java, we strongly recommend
that you look these concepts up in your favorite Java programming
book or on Sun’s Java website before you continue.

• Example2 contains the following methods, which are unique to our sample code:

• retrieveUnderlyingData()

• retrieveOptionContracts()

• filterContracts()

• Example2 also implements the following TWS Java API EWrapper methods:

tickPrice()

tickGeneric()

contractDetails()

public void tickPrice(int tickerId, int field, double price, int
canAutoExecute) {
 System.out.println(" [API.tickPrice] " +
EWrapperMsgGenerator.tickPrice(tickerId, field, price,
canAutoExecute));

 if (field == TickType.LAST) {
 underlyingData.setLastPrice(price);
 }
 }

public void tickGeneric(int tickerId, int field, double generic) {
 System.out.println(" [API.tickGeneric] " +
EWrapperMsgGenerator.tickGeneric(tickerId, tickerId, generic));

 if (field == TickType.OPTION_IMPLIED_VOL) {
 underlyingData.setImpVol(generic * 100);
 } else if (field == TickType.OPTION_HISTORICAL_VOL) {
 underlyingData.setHistVol(generic * 100);
 }
 }

public void contractDetails(int reqId, ContractDetails
contractDetails) {
 // System.out.println(" [API.contractDetails] " +
EWrapperMsgGenerator.contractDetails(reqId, contractDetails));

 if (contractDetails != null && contractDetails.m_summary !=
null && "OPT".equals(contractDetails.m_summary.m_secType)) {
 optionContracts.add(contractDetails.m_summary);
 }
 }
Getting Started with the TWS ActiveX API 108

Sample Applications for the Java API
Chapter 23 - Example 2: Automating Option Orders
contractDetailsEnd()

orderStatus()

nextValidId()

Now we’ll look at the details of the run() method.

Connecting to TWS

The first thing that the run() method inside Example2 does is to initiate a try Block, which
begins by calling the connectToTWS() method:

The connectToTWS() method, which is NOT part of our TWS Java API, is defined in
ExampleBase:

public void contractDetailsEnd(int reqId) {
 System.out.println(" [API.contractDetailsEnd] " +
EWrapperMsgGenerator.contractDetailsEnd(reqId));

 RequestIDManager.singleton().addToRequestsCompleted(reqId);
 }

public void orderStatus(int orderId, String status, int filled, int
remaining, double avgFillPrice, int permId, int parentId, double
lastFillPrice, int clientId, String whyHeld) {
 System.out.println(" [API.orderStatus] " +
EWrapperMsgGenerator.orderStatus(orderId, status, filled, remaining,
avgFillPrice, permId, parentId, lastFillPrice, clientId, whyHeld));
 }

public void nextValidId(int orderId) {
 System.out.println(" [API.nextValidId] " +
EWrapperMsgGenerator.nextValidId(orderId));
 RequestIDManager.singleton().initializeOrderId(orderId);
 }
}

// Make connection
connectToTWS();

public abstract class ExampleBase extends Thread implements EWrapper {
 protected EClientSocket eClientSocket = new EClientSocket(this);
 protected final static String TWS_HOST = "localhost";
 protected final static int TWS_PORT = 7496;
 protected final static int TWS_CLIENT_ID = 1;
 protected final static int MAX_WAIT_COUNT = 15; // 15 secs
 protected final static int WAIT_TIME = 1000; // 1 sec

 protected void connectToTWS() {
 eClientSocket.eConnect(TWS_HOST, TWS_PORT, TWS_CLIENT_ID);
 }
Getting Started with the TWS ActiveX API 109

Sample Applications for the Java API
Chapter 23 - Example 2: Automating Option Orders
As you can see from the code, ExampleBase is a thread that extends the TWS Java API
EWrapper, then sets the values of these connection parameters:

• TWS_HOST - This is the host name or IP address of the machine where TWS is running.
If you leave this parameter blank, localhost will be used.

• TWS_PORT - This is the port specified in the API Socket Port field in TWS’ API
Configuration screen

• TWS_CLIENT_ID - This is the number TWS uses to identify the client connection.
Remember that each client must connect with a unique client ID.

These are the parameters in the eClientSocket eConnect() method. ExampleBase also sets
the values of MAX_WAIT_COUNT and WAIT_TIME, which we’ll see are used in the while loop in
Example1.

After setting the values of these parameters, ExampleBase calls the EClientSocket
eConnect() method, including the three connection parameters.

Example 2 is designed to run on your local computer “out of the
box.” If you receive a connection error when you try to run Example
1, change the value for TWS HOST = on line 19 in ExampleBase
from “localhost” to the IP address where TWS is running.

Retrieving the Underlying Data

The next thing that the run() method must do is retrieve market data for the specified
underlying, IBKR, then retrieve option contracts for the underlying if certain criteria are met.
It does this by running a series of if statements, which call the retrieveUnderlyingData()
method and then, if the criteria are met, calls the retrieveOptionContracts() method to
further filter the results and place a straddle order.
Getting Started with the TWS ActiveX API 110

Sample Applications for the Java API
Chapter 23 - Example 2: Automating Option Orders
Let’s look at retrieveUnderlyingData(), which is defined in Example2.java:

retrieveUnderlyingData() begins by declaring the following local variables:

• isSuccess - This is a boolean variable that is initially set to False. You can see this
variable in action in the while loop.

• waitCount - This integer is initially set to 0. You will also see this variable used in the
while loop.

private boolean retrieveUnderlyingData() throws InterruptedException {
boolean isSuccess = false;
int waitCount = 0;

// Create a contract, with defaults...
Contract contract = createContract(underlyingData.getSymbol(), "STK",

"SMART", "USD");

// Requests market data
int requestId = RequestIDManager.singleton().getNextRequestId();
eClientSocket.reqMktData(requestId, contract, GENERIC_TICKS, false);

while (!isSuccess && waitCount < MAX_WAIT_COUNT) {
// Check if last price and volatilities loaded
if (underlyingData.isDataReady()) {

isSuccess = true;
} else {

sleep(WAIT_TIME); // Pause for 1 sec
waitCount++;

}
}

// Cancel market data
eClientSocket.cancelMktData(requestId);

return isSuccess;
}

Getting Started with the TWS ActiveX API 111

Sample Applications for the Java API
Chapter 23 - Example 2: Automating Option Orders
Creating a Contract

The next thing that the retrieveUnderlyingData() does is to create a contract object
containing four parameters:

It creates the contract by calling the createContract() method in ExampleBase. Note that
both retrieveUnderlyingData() and createContract() are not part of our TWS Java API.

The parameters included in this method are listed below.

• symbol - This variable is initialized in Example2.java, but the value is set in the
build.xml build file. In our sample, we use IBKR.

• securityType - The value for this parameter is set to STK (for stock) in the Example1 call
to the createContract() method.

protected Contract createContract(String symbol, String
securityType, String exchange, String currency) {

return createContract(symbol, securityType, exchange,
currency, null, null, 0.0);

}

protected Contract createContract(String symbol, String
securityType, String exchange, String currency, String expiry,
String right, double strike) {

Contract contract = new Contract();

contract.m_symbol = symbol;
contract.m_secType = securityType;
contract.m_exchange = exchange;
contract.m_currency = currency;

if (expiry != null) {
 contract.m_expiry = expiry;

}

if (strike != 0.0) {
 contract.m_strike = strike;

}

if (right != null) {
 contract.m_right = right;

}

return contract;
}

createContract() Method

protected Contract createContract(String symbol, String
securityType, String exchange, String currency) {

return createContract(symbol, securityType, exchange,
currency, null, null, 0.0);

}

Getting Started with the TWS ActiveX API 112

Sample Applications for the Java API
Chapter 23 - Example 2: Automating Option Orders
• exchange - The value for this parameter is set to SMART (for IBSmartRouting) in the
Example1 call to the createContract() method.

• currency - The value for this parameter is set to USD (for US dollars) in the Example1
call to the createContract() method.

This method uses the TWS Java API Contract SocketClient
property but only makes use of a few of the attribues in that object.
For a complete list of all of the attributes in the Contract object, see
the API Reference Guide. You could modify the code in our sample
to retrieve market data for an option instead a stock by changing

the value of the securityType parameter in createContract() and using
additional Contract attributes such as m_expiry, m_strike and m_right.

Requesting Market Data

Next, retrieveUnderlyingData() requests market data, using the code in
RequestIDManager.java to keep track of request IDs. The symbol, IBKR, is a command line
argument.

RequestIDManager is our own little piece of code that manages all of the market data request
IDs and order IDs so that you don’t have to.

Notice that this bit of code is calling the reqMktData() EClientSocket method, which is part of
our TWS Java API. The parameters are:

• requestID - This is a unique value used to identify this market data request. Here we
are simply automatically incrementing the request ID numbers. You can also use a
specific number for this parameter, such as 1, instead of our little automation.

• contract - This is the Contract SocketClient object that contains attributes that describe
the contract that we’ve already defined. In our sample, remember that we’re looking for
market data for IBKR.

• GENERIC_TICKS - This was initialized at the beginning of Example2.java (line 41 if
you’re keeping track of line numbers) and set to tick values 104 and 106, which will
retrieve values for historical volatility and option implied volatility, respectively.

You can see the complete list of tick values in our API Reference
Guide, which is available on our website.

• snapshot - This boolean parameter is set to false here, which tells TWS to market data
that dynamically updates. When you use snapshot (set the parameter to true), you
cannot enter any values for genericTicklist (or in this case, GENERIC_TICKS, which we
initialized at the beginning of Example2.java).

/// Requests market data
int requestId = RequestIDManager.singleton().getNextRequestId();
eClientSocket.reqMktData(requestId, contract, GENERIC_TICKS, false);
Getting Started with the TWS ActiveX API 113

http://individuals.interactivebrokers.com/php/apiUsersGuide/apiguide/api/generic_tick_types.htm
http://individuals.interactivebrokers.com/php/apiUsersGuide/apiguide/api/generic_tick_types.htm
http://individuals.interactivebrokers.com/php/apiUsersGuide/apiguide/java/contract.htm

Sample Applications for the Java API
Chapter 23 - Example 2: Automating Option Orders
The while Loop

Recall that retrieveUnderlyingData() started out by declaring a pair of local variables,
isSuccess and waitCount. Just as in Example 1, we use these variables in the while loop in
retrieveUnderlyingData() that is part of the code that gets the market data of the specified
contract and checks to see if the values for last price, option implied volatility and historical
volatility are set.

The isDataReady() method is responsible for performing this check:

In addition, the while loop also uses MAX_WAIT_COUNT and WAIT_TIME to evaluate whether
or not to display the three prices of the specified contract.

The while loop checks for the three prices every one second, then displays the prices in the
output if the time it takes to get the value from TWS is less than the value of
MAX_WAIT_COUNT value, which is set to 15 seconds in ExampleBase. If it takes 15 seconds
or less to retrieve the prices of the specified stock, those prices are displayed in the output
when the program runs. If it takes longer than 15 seconds to get the prices from TWS, the
error message indicated in the preceding code snippet is displayed, then the program
disconnects from TWS. You can change this wait time to a value longer or shorter than 15
seconds by changing the value of MAX_WAIT_COUNT in ExampleBase.java.

isDataReady() Method

public boolean isDataReady() {
if (symbol == null || minImpVol == 0.0 || volRatioLimit == 0.0 ||

lastPrice == 0.0 || impVol == 0.0 || histVol == 0.0) {
return false;

} else {
return true;

}
}

while (!isSuccess && waitCount < MAX_WAIT_COUNT) {
// Check if last price and volatilities loaded
if (underlyingData.isDataReady()) {

isSuccess = true;
} else {

sleep(WAIT_TIME); // Pause for 1 sec
waitCount++;

}
}

Getting Started with the TWS ActiveX API 114

Sample Applications for the Java API
Chapter 23 - Example 2: Automating Option Orders
Getting the Last Price, Option Implied Volatility and Historical Volatility

The code that actually returns the last price is the tickPrice() EWrapper method, and the
code that actually returns the option implied volatility and historical volatility is the
tickGeneric() EWrapper method, which are implemented in Example2.java:

tickPrice() has four parameters:

• tickerId - This is the ID that was previously specified in the reqMktData() method.

• field - This parameter specifies the type of price to retrieve. In our sample, we want to
retrieve the LAST price, but we could just as easily specified the bid, ask, high or low, as
well as any other type of price that is defined in the TickType object.

• price - This parameter holds the price for the price type specified in field.

• canAutoExecute - This is a boolean parameter that specifies whether the price tick is
eligible for automatic execution. A value of 0 (zero) indicates that the the price tick is
NOT eligible; a value of 1 indicates that the price tick IS eligible.

The last piece of this code snippet contains an if statement that sets the lastPrice attribute
(that was initialized at the beginning of Example1.java) to the price parameter in tickPrice()
if the field parameter is set to LAST. tickPrice() typically returns a series of prices from TWS:
bid, ask, last, and so on. This if statement basically means that as soon the last price is sent
from TWS, the lastPrice attribute in our sample code is set to that last price from TWS. Our
sample is only interested in the last price.

tickPrice() Method

public void tickPrice(int tickerId, int field, double price, int
canAutoExecute) {

System.out.println(" [API.tickPrice] " +
EWrapperMsgGenerator.tickPrice(tickerId, field, price,

 canAutoExecute));

if (field == TickType.LAST) {
underlyingData.setLastPrice(price);

}
}

tickGeneric() Method

public void tickGeneric(int tickerId, int field, double generic) {
System.out.println(" [API.tickGeneric] " +

EWrapperMsgGenerator.tickGeneric(tickerId, tickerId, generic));

if (field == TickType.OPTION_IMPLIED_VOL) {
underlyingData.setImpVol(generic * 100);

} else if (field == TickType.OPTION_HISTORICAL_VOL) {
underlyingData.setHistVol(generic * 100);

}
}

Getting Started with the TWS ActiveX API 115

Sample Applications for the Java API
Chapter 23 - Example 2: Automating Option Orders
tickGeneric() has three parameters:

• tickerId - This is the ID that was previously specified in the reqMktData() method.

• field - This parameter specifies the type of price to retrieve. In our sample, we want to
retrieve the option implied volatility and historical volatility.

• canAutoExecute - This is a boolean parameter that specifies whether the price tick is
eligible for automatic execution. A value of 0 (zero) indicates that the the price tick is
NOT eligible; a value of 1 indicates that the price tick IS eligible.

The last piece of this code snippet contains an if statement that basically means that as soon
the option implied volatility and historical volatility are sent from TWS, the corresponding
attributes in our sample code are set to those values from TWS.

Retrieving Options Contracts

When the values for last price, option implied volatility and historical volatility are received,
the run() method runs isOrderCriteriaMet(), which checks to see if the initial criteria for
placing a straddle order have been met by the data and is defined in UnderlyingData.java.

Recall that if this initial criteria is met, then we retrieve all of the available option contracts for
the underlying. The initial criteria are:

• The three data values must be set (isDataReady())

• AND impVol (option implied volatility) is equal to or greater than the minImpVol (set to
125 in our build file)

• AND option implied volatility divided by historical volatility is greater than volRatioLimit
(set to 2 in our build file).

If all three of these criteria are met by the retrieved market data, then and only then will the
program retrieve all the available option contracts for the underlying (IBKR).

If the criteria is NOT met, a message is displayed in the output and the program disconnects
from TWS. If the criteria IS met, the next if statement in the run() method retrieves all the
available option contracts for the underlying.

isOrderCriteriaMet() Method

public boolean isOrderCriteriaMet() {
 if (isDataReady() && impVol >= minImpVol && (impVol /
histVol > volRatioLimit)) {
 return true;
 } else {
 return false;
 }
 }
Getting Started with the TWS ActiveX API 116

Sample Applications for the Java API
Chapter 23 - Example 2: Automating Option Orders
The run() method calls the retrieveOptionContracts() method to get all of the available
option contracts for the underlying.

This method creates a contract for an option using SMART as the exchange and USD as the
currency, and uses the RequestIDManager code to manage the market data request IDs.

retrieveOptionContracts() then requests contract details for all available option contracts
for the underlying by calling the reqContractDetails() TWS Java API EClientSocket method.
Finally it runs a while loop that does pretty much the same thing as the previous while loop we
saw - it checks for the last option contract every one second, and times out if the time it takes
to get the next contract from TWS is more than the value of MAX_WAIT_COUNT value, which
is set to 15 seconds in ExampleBase. You can change this wait time to a value longer or
shorter than 15 seconds by changing the value of MAX_WAIT_COUNT in ExampleBase.java.

contractDetails() and contractDetailsEnd()

The TWS Java API Ewrapper method contractDetails() returns the details from TWS for the
available option contracts. After all of the available option contract details have been received,
the Ewrapper method contractDetailsEnd() is received from TWS. contractDetailsEnd()
serves as an end marker for the contract details and tells our little sample program that all of
the contract details have been received.

retrieveOptionContracts() Method

private boolean retrieveOptionContracts() throws InterruptedException {
boolean isSuccess = false;
int waitCount = 0;

// Find all option contracts for underlying, will filter strike and
expiry later...

Contract contract = createContract(underlyingData.getSymbol(), "OPT",
"SMART", "USD");

int requestId = RequestIDManager.singleton().getNextRequestId();
eClientSocket.reqContractDetails(requestId, contract);

while (!isSuccess && waitCount < MAX_WAIT_COUNT) {
// Check if all contracts received
if (RequestIDManager.singleton().isRequestComplete(requestId)) {

isSuccess = true;
} else {

sleep(WAIT_TIME); // Pause for 1 sec
waitCount++;

}
}

return isSuccess;
}

Getting Started with the TWS ActiveX API 117

Sample Applications for the Java API
Chapter 23 - Example 2: Automating Option Orders
Filtering the Option Contracts

Before the program can place a straddle order however, it must filter the available option
contracts that it retrieved. It runs the filterContracts() method in Example2.java, which
uses two for loops to filter this data for two criteria:

• It finds the option contracts whose strike price is closest to the last price of the
underlying, and then

• It finds the option contract whose expiry is at least 15 days away from the current date
(today). The program uses DateUtil.java to do this.

filterContracts() Method

private Contract filterContracts(String right) {
Contract c = null;

// First by price
double priceDiff = 0.0;

for (Contract contract : optionContracts) {
if (contract.m_right.equals(right)) {

if (c == null) {
c = contract;
priceDiff = Math.abs(contract.m_strike - underlyingData.getLastPrice());

} else {
double tempDiff = Math.abs(contract.m_strike - underlyingData.getLastPrice());
if (tempDiff < priceDiff) {

c = contract;
priceDiff = tempDiff;

}
}

}
}

// Next find closest expiry outside 15 days
long days = 0;

for (Contract contract : optionContracts) {
// This time include check to look at those matching strike
if (contract.m_right.equals(right) && contract.m_strike == c.m_strike) {

if (days == 0) {
days = DateUtil.getDeltaDays(contract.m_expiry);
c = contract;

} else {
long tempDays = DateUtil.getDeltaDays(contract.m_expiry);
if (tempDays < days && tempDays > 15) {

days = tempDays;
c = contract;

}
}

}
}

System.out.println(" [Debug] Filtered option contract: " + c.m_symbol + " " + c.m_expiry
+ " " + c.m_strike + " " + c.m_right);

return c;
}

Getting Started with the TWS ActiveX API 118

Sample Applications for the Java API
Chapter 23 - Example 2: Automating Option Orders
If neither of these filtering processes finds an option contract, the straddle order is not placed
and messages are displayed in the output before the program disconnects from TWS.

Placing the Straddle Order

If an option contract IS found; that is, its strike price is closest to the last price of the
underlying, and its expiry is at least 15 days away from the current date; then run() places a
buy straddle order for a calll and a put. It calls the TWS Java API placeOrder() EClientSocket
method to create two orders for one option each, one a market buy for a put, the other a
market buy for a call. Here again is the code that handles the orders:

The EWrapper method orderStatus() is called to report the status of the orders in the output.

Disconnecting from TWS

The run() method ends by disconnecting the sample program from TWS:

As you can see, we’re calling the disconnectFromTWS() method, which is defined in
ExampleBase:

This code calls the EClientSocket eDisconnect() method if the EClientSocket isConnected()
method is running. isConnected() checks to see if there is a connection with TWS;
eDisconnect() simply disconnects from TWS.

For descriptions of all of the EClientSocket methods in our TWS Java API, see the
API Reference Guide.

if (RequestIDManager.singleton().isOrderIdInitialized()) {
// Place buy straddle for 1 contract as market order
Order callOrder = createOrder("BUY", 1, "MKT");
Order putOrder = createOrder("BUY", 1, "MKT");

eClientSocket.placeOrder(RequestIDManager.singleton().getNextOrderId(),
callContract, callOrder);

eClientSocket.placeOrder(RequestIDManager.singleton().getNextOrderId(),
putContract, putOrder);

System.out.println(" [Info] Buy straddle market order submitted for: " +
underlyingData.toString());

sleep(WAIT_TIME * 30); // Hang around for order status updates...
} else {

finally {
disconnectFromTWS();

protected void disconnectFromTWS() {
 if (eClientSocket.isConnected()) {
 eClientSocket.eDisconnect();
Getting Started with the TWS ActiveX API 119

http://individuals.interactivebrokers.com/php/apiUsersGuide/apiguide/java/java_eclientsocket_methods.htm

Sample Applications for the Java API
Chapter 23 - Example 2: Automating Option Orders
The build.xml Build File

Example 2 uses the same build file, build.xml, as Example 1. It is in this file that we specify
the specific contract symbol whose last price we are interested in getting, as well as the option
implied volatility and historical volatility (the command line arguments). In our sample, we’ve
set these to IBKR (Interactive Brokers of course), 125 and 2, but you can test the program out
with any symbol or trading strategy you prefer.

If you’re not familiar with build files, we recommend looking for more
information about Ant or on Sun’s Java website.

This concludes the discussion of our two code samples. The next section of this book tells you
where you can get more information about our TWS Java API.
Getting Started with the TWS ActiveX API 120

8
Where to Go from Here

If you've come this far and actually read the book, you now have a pretty decent grasp on
what the Java API can do, and how to make it do some of the things you want. Now we give
you a bit more information about how to link to TWS with our Java API, and we suggest some
helpful outside resources you can use to help you move forward.

This section contains the following chapters:

• Chapter 24 - Linking to TWS using the TWS Java API

• Chapter 25 - Additional Resources
Getting Started with the TWS Java API 121

Where to Go from Here
Chapter 24 - Linking to TWS using the TWS Java API
Chapter 24 - Linking to TWS using the TWS
Java API

If you have the skill and confidence to handle Java on your own, you can build your own Java
application to link to TWS, using the following steps as a guide.

1 Import com.ib.client.* into your source code file. This is the package that contains the
TWS Java API classes and methods.

2 Implement the EWrapper interface. This class will receive messages from the socket.

3 Override the following methods:

EWrapper Method Description

tickPrice() Handles market data.

tickSize()

tickOptionComputation()

tickGeneric()

tickString()

tickEFP()

orderStatus() Receives order status.

openOrder() Receives open orders.

error() Receives error information.

connectionClosed() Notifies you when TWS terminates
the connection.

updateAccountValue() Receives current account values.

updateAccountTime() Receives the last time account
information was updated.

updatePortfolio() Receives current portfolio
information.

nextValidId() Receives the next valid order ID
upon connection.

contractDetails() Receives contract information.

contractDetailsEnd() Identifies the end of a given contract
details request.

bondContractDetails() Receives bond contract information.

exectDetails() Receives execution report
information.

updateMktDepth() Receives market depth information.

updateMktDepthL2() Receives Level II market depth
information.

updateNewsBulletin() Receives IB news bulletins.
Getting Started with the TWS Java API 122

Where to Go from Here
Chapter 24 - Linking to TWS using the TWS Java API
4 Instantiate the EClientSocket class. This object will be used to send messages to TWS.

5 Call the following EClientSocket methods:

managedAccounts() Receives a list of Financial Advisor
(FA) managed accounts.

receiveFA() Receives FA configuration
information.

historicalData() Receives historical data results.

scannerParameters() Receives an XML document that
describes the valid parameters of a
scanner subscription.

scannerData() Receives market scanner results.

scannerDataEnd() Called when the scanner snapshot is
received and marks the end of one
scan.

realTimeBar() Receives real-time bars.

currentTime() Receives the current system time on
the server.

fundamentalData() Receives Reuters global fundamental
market data.

EClientSocket Method Description

eConnect() Connects to TWS.

eDisconnect() Disconnects from TWS.

reqMktData() Requests market data.

cancelMktData() Cancels market data.

reqMktDepth() Requests market depth.

cancelMktDepth() Cancels market depth.

reqContractDetails() Requests contract details.

placeOrder() Places an order.

cancelOrder() Cancels an order.

reqAccountUpdates() Requests account values, portfolio,
and account update time
information.

reqExecutions() Requests a list of the day’s execution
reports.

reqOpenOrders() Requests a list of current open
orders for the requesting client and
associates TWS open orders with the
client. The association only occurs if
the requesting client has a Client ID
of 0.

reqAllOpenOrders() Requests a list of all open orders.

EWrapper Method Description
Getting Started with the TWS Java API 123

Where to Go from Here
Chapter 24 - Linking to TWS using the TWS Java API
reqAutoOpenOrders() Automatically associates a new TWS
with the client. The association only
occurs if the requesting client has a
Client ID of 0.

reqNewsBulletin() Requests IB news bulletins.

cancelNewsBulletins() Cancels IB news bulletins.

setServerLogLevel() Sets the level of API request and
processing logging.

reqManagedAccts() Requests a list of Financial Advisor
(FA) managed account codes.

requestFA() Requests FA configuration
information from TWS.

replaceFA() Modifies FA configuration
information from the API.

reqScannerParameters() Requests an XML document that
describes the valid parameters of a
scanner subscription.

reqScannerSubscription() Requests market scanner results.

cancelScannerSubscription() Cancels a scanner subscription.

reqHistoricalData() Requests historical data.

cancelHistoricalData() Cancels historical data.

reqRealTimeBars() Requests real-time bars.

cancelRealTimeBars() Cancels real-time bars.

exerciseOptions() Exercises options.

reqCurrentTime() Requests the current server time.

serverVersion() Returns the version of the TWS
instance to which the API application
is connected.

TwsConnectionTime() Returns the time the API application
made a connection to TWS.

reqFundamentalData() Requests Reuters global
fundamental data. There must be a
subscription to Reuters Fundamental
set up in Account Management
before you can receive this data.

cancelFundamentalData() Cancels Reuters global fundamental
data.

EClientSocket Method Description
Getting Started with the TWS Java API 124

Where to Go from Here
Chapter 25 - Additional Resources
Chapter 25 - Additional Resources
There are many resources out there that will be adequate in getting you where you need to
go. If you have some books or places that you like, feel free to stick with them. The following
are the resources we find most helpful, and perhaps they'll be good to you, too!

Help with Java Programming

While this book is intended for users with Java programming experience, we understand that
even experienced Java programmers need help every once in a while.

The best place to go to find additional help with all things Java is the Sun web site. Just type
http://java.sun.com in your browser's address line and check out the list of links under
Resources on the right side of the page. Sun has many online resources available for Java
programmers, including documentation, tutorials, and code samples.

If you simply want to look up information about the actual Java API (as opposed to our TWS
Java API), you can go directly to Sun's API Specifications Reference page. There you will find
links to documentation, Javadocs, technical articles and a whole host of useful information.

There are literally hundreds of additional printed and web-based resources for Java
programmers. We encourage you to investigate these on your own.

Help with the Java API

For help specific to the Java TWS API, the one best place to go, really the ONLY place to go, is
the Interactive Brokers website. Once you get there, you have lots of resources. Just type
www.interactivebrokers.com in your browser's address line. Now that you're there, let me tell
you where you can go.

As of this writing in March 2011, the IB website looks as I'm
describing. IB has a tendency to revamp the look and organization
of their site every year or two, so have a little patience if it looks
slightly different from what's described here.

The API Reference Guide

The API Reference Guide includes sections for each API technology, including the DDE for
Excel. The upper level topics which are shown directly below the main book are applicable
across the board to all or multiple platforms.

To access the API Reference Guide from the IB web site, select API Solutions from the
Trading menu, then click the IB API button, then click the Reference Guide tab. Click the
Online API Reference Guide button to open the online guide, which contains a section
devoted entirely to the DDE for Excel API.

The API Beta and API Production Release Notes

The beta notes are in a single page file, and include descriptions of any new additions to the
API (all platforms) that haven't yet been pushed to production. The API Release Notes opens
an index page that includes links to all of the past years' release notes pages. The index
provides one-line titles of all the features included in each release.
Getting Started with the TWS Java API 125

http://java.sun.com
http://java.sun.com/reference/api/
http://www.interactivebrokers.com

Where to Go from Here
Chapter 25 - Additional Resources
To access these notes from the IB web site, select API Solutions from the Trading menu, then
click the IB API button, then click the Release Notes tab and select a link to the latest API
production release notes. You can also access the release notes for the latest API Beta release
from this page.

The TWS API Webinars

IB hosts free online webinars through WebEx to help educate their customers and other
traders about the IB offerings. They present the API webinar about once per month, and have
it recorded on the website for anyone to listen to at any time.

• To register for the API webinar, from the IB web site click Education, then select
Webinars. Click the Live Webinars button, then click the API tab.

• To view the recorded version of the API webinar, from the Live Webinars page click
the Watch Previously Recorded Webinars button. Links to recorded versions of
previously recorded webinars are listed on the page.

API Customer Forums

You can trade ideas and send out pleas for help via the IB customer base accessible through
both the IB Bulletin Board and the Traders' Chat. The bulletin board includes a thread for the
API, and thus provides an ongoing transcript of questions and answers in which you might find
the answer to your question. The Traders' Chat is an instant-message type of medium and
doesn't retain any record of conversations.

• "To view or participate in the IB Bulletin Board, go to the Education menu and click
Bulletin Boards & Chats. Click the Bulletin Board tab, then click the Launch IB
Discussion Forum button to access all of our bulletin boards, including the TWS API
bulletin board.

• To participate in the Traders' Chat, you need to click the Chat icon from the menu bar
on TWS. Note that both of these customer forums are for IB customers only.

IB Customer Service

IB customers can also call or email customer service if you can't find the answer to your
question. However, IB makes it clear that the APIs are designed for use by programmers and
that their support in this area is limited. Still, the customer service crew is very knowledgeable
and will do their best to help resolve your issue. Simply send an email to:

api@interactivebrokers.com

IB Features Poll

The IB Features Poll lets IB customers submit suggestions for future product features, and
vote and comment on existing suggestions.

From the IB web site, click About IB, then select New Features Poll. Suggestions are listed by
category; click a plus sign next to a category to view all feature suggestions for that category.
To submit a suggestion, click the Submit Suggestion link.
Getting Started with the TWS Java API 126

A
Appendix A - Extended Order
Attributes

Attribute Valid Values

timeInForce DAY
GTC
OPG
IOC

ocaGroup String

account The account number, used for institutional and advisor accounts.

open/close O, C (for institutions)

origin 0, 1 (for institutions)

orderRef String

transmit 0 (don't transmit)
1 (transmit)

Parent order
Id

String (the order ID used for the parent order, use for bracket and auto
trailing stop orders)

blockOrder 0 (not a block order)
1 (this is a block order)

sweepToFill 0 (not a sweep-to-fill order)
1 (this is a sweep-to-fill order)

displaySize String (publicly disclosed order size)
Getting Started with the TWS Java API 127

Appendix A - Extended Order Attributes
triggerMethod Specifies how simulated Stop, Stop-Limit, and Trailing Stop orders are
triggered.
0 - the default value. The "double bid/ask" method will be used for orders
for OTC stocks and US options. All other orders will use the "last"
method.
1 - use "double bid/ask" method, where stop orders are triggered based
on two consecutive bid or ask prices.
2 - "last" method, where stop orders are triggered based on the last
price.
3 - "double-last" method, where stop orders are triggered based on last
two prices.
4 – “bid-ask” method. For a buy order, a single occurrence of the bid
price must be at or above the trigger price. For a sell order, a single
occurrence of the ask price must be at or below the trigger price.
7 – “last-or-bid-ask” method. For a buy order, a single bid price or the
last price must be at or above the trigger price. For a sell order, a single
ask price or the last price must be at or below the trigger price.
8 – “mid-point” method, where the midpoint must be at or above (for a
buy) or at or below (for a sell) the trigger price, and the spread between
the bid and ask must be less than 0.1% of the midpoint.

Hidden Only valid for orders routed to Island.
0 - False
1 (order not visible when viewing market depth)

Discretionary
Amount

Used in conjunction with a limit order to give the order a greater price
range over which to execute.

Good After
Time

Enter the date and time after which the order will become active. Use the
format YYYYMMDD hh:mm:ss

Good 'Till
Date

The order continues working until the close of market on the date you
enter. Use the format YYYYMMDD. To specify a time of day to close the
order, enter the time using the format HH:MM:SS. Specify the time zone
using a valid three-letter acronym.

FA Group For Advisor accounts only. The name of the Account Group.

FA Method For Advisor accounts only. The share allocation method.
EqualQuantity
NetLiq
AvailableEquity
PctChange

FA Percentage For Advisor accounts only. The share allocation percentage.

FA Profile For Advisor accounts only. The name of the Share Allocation profile.

Short Sale
Slot

For institutional accounts only; for SSHORT actions.
1 – If you hold the shares
2 – Shares will be delivered from elsewhere.

Short Sale
Location

If shares are delivered from elsewhere, enter where in a comma-
delimited list with no spaces. For institutional accounts only.

Attribute Valid Values
Getting Started with the TWS Java API 128

Appendix A - Extended Order Attributes
OCA Type 1 = Cancel on Fill with Block
2 = Reduce on Fill with Block
3 = Reduce on Fill without Block

Rule 80A Individual = 'I'
Agency = 'A',
AgentOtherMember = 'W'
IndividualPTIA = 'J'
AgencyPTIA = 'U'
AgentOtherMemberPTIA = 'M'
IndividualPT = 'K'
AgencyPT = 'Y'
AgentOtherMemberPT = 'N'

Settling Firm Institutions only

All or None 0 = false
1 = true

Minimum Qty Identifies the order as a minimum quantity order.

Percent Offset The percent offset for relative orders.

Electronic
Trade Only

0 = false
1 = true

Firm Quote
Only

0 = false
1 = true

NBBO Price
Cap

Maximum SMART order distance from the NBBO.

Auction
Strategy

For BOX exchange only.
match = 1
improvement = 2
transparent = 3

Starting Price The starting price. For BOX orders only.

Stock Ref
Price

Used for VOL orders to compute the limit price sent to an exchange
(whether or not Continuous Update is used), and for price range
monitoring. Also used for price improvement option orders.

Delta The stock delta. For BOX orders only.

Stock Range
Lower

The lower value for the acceptable underlying stock price range. For price
improvement option orders on BOX and VOL orders with dynamic
management.

Stock Range
Upper

The upper value for the acceptable underlying stock price range. For price
improvement option orders on BOX and VOL orders with dynamic
management.

Volatility The option price in volatility, as calculated by TWS
' Option Analytics. This value is expressed as a percent and is used to
calculate the limit price sent to the exchange.

Attribute Valid Values
Getting Started with the TWS Java API 129

Appendix A - Extended Order Attributes
Volatility Type 1 = daily
2 = annual

Reference
Price Type

1 = average
2 = BidOrAsk

Hedge Delta
Order Type

Prior to TWS
 Release 859, use "1" to send a market order, "0" for no order. After TWS
859, enter an accepted order type such as: MKT, LMT, REL.

Continuous
Update

0 = false
1 = true

Hedge Delta
Aux Price

Enter the Aux Price for Hedge Delta order types that require one.

Trail Stop
Price

Used for Trailing Stop Limit orders only. This is the stop trigger price for
TRAILLIMIT orders.

Scale Num
Components

Used for Scale orders only, this value defines the number of components
in the order.

Scale
Component
Size

NO LONGER SUPPORTED

Scale Price
Increment

Used for Scale orders only, this value is used to calculate the per-unit
price of each component in the order. This cannot be a negative number.

Outside RTH 0 = false
1 = true

Attribute Valid Values
Getting Started with the TWS Java API 130

B
Appendix B - Account Page
Values

Field Description Notes

Account Code The account number.

Account Type Identifies the IB account type.

Accrued Cash Reflects the current month's accrued
debit and credit interest to date, updated
daily.

At the beginning of
each month, the past
month’s accrual is
added to the cash
balance and this field is
zeroed out.

Available
Funds

For securities:
Equity with Loan Value - Initial margin
For commodities:
Net Liquidation Value - Initial margin

Buying Power Cash Account
:
(Minimum (Equity with Loan Value,
Previous Day Equity with Loan Value)-
Initial Margin)
Standard Margin Account
:
Available Funds*4

Cash Balance For securities:
Settled cash + sales at the time of trade
For commodities:
Settled cash + sales at the time of trade
+ futures PNL

Currency Shows the currency types that are listed
in the Market Value area.

Cushion Shows your current margin cushion.

Day Trades
Remaining

Number of day trades left for pattern day
trader period.

Day Trades
Remaining
T+1, T+2,
T+3, T+4

The number of day trades you have left
for a 4-day pattern day-trader.
Getting Started with the TWS Java API 131

Appendix B - Account Page Values
Equity With
Loan Value

For Securities:

• Cash Account: Settled Cash

• Margin Account:

• Total cash value + stock value
+ bond value + (non-U.S. &
Canada securities options
value)

For Commodities:

• Cash Account: Total cash value
+ commodities option value -
futures maintenance margin
requirement + minimum (0,
futures PNL)

• Margin Account: Total cash
value + commodities option
value - futures maintenance
margin requirement

Excess
Liquidity

Equity with Loan Value - Maintenance
margin

Exchange Rate The exchange rate of the currency to
your base currency.

Full Available
Funds

For securities:
Equity with Loan Value - Initial margin
For commodities:
Net Liquidation Value - Initial margin

Full Excess
Liquidity

Equity with Loan Value - Maintenance
margin

Full Init Margin
Req

Overnight initial margin requirement in
the base currency of the account.

Full Maint
Margin Req

Maintenance margin requirement as of
next period's margin change in the base
currency of the account.

Future Option
Value

Real-time mark-to-market value of
futures options.

Futures PNL Real-time change in futures value since
last settlement.

Gross Position
Value

Long Stock Value + Short Stock Value +
Long Option Value + Short Option Value.

Init Margin
Req

Initial margin requirement in the base
currency of the account.

Field Description Notes
Getting Started with the TWS Java API 132

Appendix B - Account Page Values
Leverage For Securities:

• Gross Position value / Net
Liquidation value

For Commodities:

• Net Liquidation value - Initial
margin

Look Ahead
Available
Funds

For Securities:

• Equity with loan value - look
ahead initial margin.

For Commodities:

• Net Liquidation value - look
ahead initial margin.

Look Ahead
Excess
Liquidity

Equity with loan value - look ahead
maintenance margin.

Look Ahead
Init Margin
Req

Initial margin requirement as of next
period's margin change in the base
currency of the account.

Look Ahead
Maint Margin
Req

Maintenance margin requirement as of
next period's margin change in the base
currency of the account.

Look Ahead
Next Change

Indicates when the next margin period
begins.

Maint Margin
Req

Maintenance margin requirement in the
base currency of the account.

Net Liquidation For Securities:

• Total cash value + stock value
+ securities options value +
bond value

For Commodities:

• Total cash value +
commodities options value

Net Liquidation
by Currency

Same as above for individual currencies.

Option Market
Value

Real-time mark-to-market value of
securities options.

PNL The difference between the current
market value of your open positions and
the average cost, or Value - Average
Cost.

Previous Day
Equity with
Loan Value

Marginable Equity with Loan Value as of
16:00 ET the previous day, only
applicable to securities.

Field Description Notes
Getting Started with the TWS Java API 133

Appendix B - Account Page Values
Realized PnL Shows your profit on closed positions,
which is the difference between your
entry execution cost and exit execution
cost, or (execution price + commissions
to open the positions) - (execution price
+ commissions to close the position).

Reg T Equity Initial margin requirements calculated
under US Regulation T rules.

Reg T Margin For Securities:

• Cash Account: Settled Cash

• Margin Account: Total cash
value + stock value + bond
value + (non-U.S. & Canada
securities options value)

For Commodities:

• Cash Account: Total cash value
+ commodities option value -
futures maintenance margin
requirement + minimum (0,
futures PNL)

• Margin Account: Total cash
value - futures maintenance
margin requirement

SMA Max ((EWL - US initial margin
requirements)*, (Prior Day SMA +/-
change in day's cash +/- US initial margin
requirements** for trades made during
the day.))
*calculated end of day under US Stock
rules, regardless of country of trading.
**at the time of the trade

Only applicable for
securities.

Stock Market
Value

Real-time mark-to-market value of stock

Total Cash
Balance

Cash recognized at the time of trade +
futures PNL

Total Cash
Value

Total cash value of stock, commodities
and securities

Field Description Notes
Getting Started with the TWS Java API 134

Index

A
account page values B-131
ActionListener for the Cancel Hist.
Data button 4-51
ActionListener for the Cancel Mkt
Data button 4-45
ActionListener for the Cancel Mkt
Depth butto 4-48
ActionListener for the Cancel Real
Time Bars button 4-54
ActionListener for the Cancel
Subscription button 4-58
ActionListener for the Connect
button 4-35
ActionListener for the Disconnect
button 4-37
ActionListener for the Historical
Data button 4-50
ActionListener for the Market
Scanner button 4-56
ActionListener for the Req Current
Time butto 6-80
ActionListener for the Req Mkt Data
button 4-39
ActionListener for the Req Mkt
Depth button 4-47
ActionListener for the Req Real
Time Bars button 4-53
additional resources 8-125
API

reasons for using 2-17
API beta notes 8-125
API Reference Guide 8-125
API release notes 8-125
API software

downloading 3-23
installing 3-25

API support email 8-126
API webinars 8-126

B
bAutoBind 5-76
build.xml 7-101, 7-120

C
Cancel Hist. Data button 4-51
Cancel Mkt Data button 4-45
Cancel Mkt Depth button 4-48
Cancel Real Time Bars button 4-54
canceling a market scanner
subscription 4-58
canceling historical data 4-49, 4-51

canceling market data 4-38, 4-45
canceling market depth 4-46, 4-48
canceling market scanner
subscriptiions 4-55
canceling news bulletins 6-83
canceling orders 5-62, 5-66
canceling real time bars 4-52, 4-54
cancelNewsBulletins() 6-83
cancelOrder() 5-66
cancelScannerSubscription() 4-58
changing the server logging
level 6-84
Class definition of
SampleFrame.java 4-34
Client ID and multiple API
sessions 5-73
Connect button 4-34
Connect dialog 4-35
connecting the Java Test client to
TWS 4-32
connecting to TWS 4-34
contract data 4-59
contract data fields 4-59
contractDetails() 4-60
copyExtendedOrderDetails() 5-72
createButtonPanel() method 4-34
createContract() in Example1 7-98
current time 6-80
currentTime() 6-80
customer forums 8-126
customer service 8-126

D
DDE for Excel API

additional resources 8-125
preparing to use 3-21

Disconnect button 4-37
disconnecting from TWS 4-37
document conventions 1-11
downloading API software 3-23
downloading the sample code 7-88

E
EClientSocket constructor 1-11, 4-34
Example 1

connecting to TWS 7-96
creating a contract 7-97
getting a snapshot of market

data 7-99
getting the last price 7-100,

7-115
running 7-92

while loop 7-99
Example 2

filtering option contracts 7-118
isDataReady() 7-114
isOrderCriteriaMet() 7-116
placing a straddle order 7-119
retrieveOptionContracts() 7-11

7
retrieveUnderlyingData() 7-111
retrieving market data 7-113
running 7-102
while loop in

retrieveUnderlyingDat
a() 7-114

Example1
disconnecting 7-101

Example1.java 7-94
Example2

connecting 7-109
contractDetails() 7-108
creating a contract 7-112
nextValidId() 7-109
orderStatus() 7-109
retrieving underlying

data 7-110
run() method 7-107
tickGeneric() 7-108
tickPrice() 7-108

Example2.java 7-105
examples

build.xml 7-101, 7-120
Example 1 - Requesting Market

Data 7-92
Example 2 - Automating Option

Orders 7-102
preparing the sample code 7-88
setting up a project in

NetBeans 7-89
execDetails() 5-78
execDetails() parameters 5-78
Execution Filter dialog 5-77
execution information display 5-78
executions 5-77
Exercise Options button 5-68
exercise options fields 5-69
exerciseOptions() 5-70
exerciseOptions() parameters 5-70
exercising options 5-68
Extended button 5-71
Extended order attribrutes 5-71
Extended Order Attributes
dialog 5-71
externded order attributes A-127
Getting Started with the TWS Java API 135

Index
F
Features Poll 8-126
footnotes and references 1-9
framework of Java Test Client 4-32

H
historical data 4-49
Historical Data button 4-50
historical data fields 4-49
historicalData() 4-51
how to use this book 1-8

I
IB bulletin boards 8-126
IB Customer Service 8-126
icons used in this book 1-10
installing API software 3-25
introduction 1-7, 4-31, 5-61, 6-79

J
J2SE Development Kit and NetBeans IDE Bundle 3-22
Java API, help with 8-125
Java IDE, downloading 3-22
Java JDK, downloading 3-22
Java programming help 8-125
Java Test Client

connecting to TWS 4-32
framework 4-32

Java Test Client main window 4-32

L
Log Configuration dialog 6-85
log.txt file 6-84
logLevel 6-85

M
market data 4-38

canceling 4-45
EWrapper methods 4-44
snapshot 4-45

market data returned 4-43
market depth 4-46
market depth fields 4-46
Market Scanner button 4-56
market scanners 4-55
modifying orders 5-66
multiple API sessions 5-73

N
NetBeans

using with sample code 7-89
Netbeans 3-22
News Bulletin Subsription dialog 6-81
news bulletins 6-81

O
onCancelHistoricalData() 4-51
onCancelMktData() 4-45

onCancelMktDepth() 4-48
onCancelOrder() 5-66
onCancelRealTimeBars() 4-54
onCancelSubscription() 4-58
onConnect() method 4-35
onExerciseOptions() 5-68
onExtendedOrder() 5-72
onHistoricalData() 4-50
onPlaceOrder() 5-64
onReqAllOpenOrders() 5-75
onReqAutoOpenOrders() 5-76
onReqContractData() 4-60
onReqCurrentTime() 6-80
onReqExecutions() 5-77
onReqMktData() method 4-39
onReqMktDepth() 4-47
onReqNewsBulletins() 6-81
onReqOpenOrders() 5-74
onReqRealTimeBars() 4-53
onScanner() 4-56
onServerLogging() 6-84
open orders 5-73
openOrder(5-74
options 5-68
order fields 5-64
orders 5-62

modifying 5-66
what-if 5-67

orderStatus() 5-66, 5-74
organization of this book 1-8

P
Place Order button 5-63
placeOrder() 5-65
placeOrder() parameters 5-65
placing orders 5-62
preparing to use the DDE for Excel API 3-21

R
real time bars 4-52

default bar size 4-53
real-time account monitoring, in TWS 2-16
realtimeBar() 4-54
reasons for using an API 2-17
Req All Open Orders button 5-75
Req Auto Open Orders button 5-76
Req Contract Data button 4-59
Req Current Time button 6-80
Req Executions button 5-77
Req Mkdt Depth button 4-47
Req Mkt Data button 4-39
Req News Bulletins button 6-81
Req Open Orders button 5-74
Req Real Time Bars button 4-53
reqAllOpenOrders() 5-75
reqAutoOpenOrders() 5-76
reqContractDetails() 4-60
reqCurrentTime() 6-80
reqExecutions() 5-78
Getting Started with the TWS Java API 136

Index
reqHistoricalData() 4-50
reqMktData() 4-41
reqMktData() parameters 4-41
reqMktDepth() 4-47
reqMktDepth() parameters 4-47
reqNewsBulletins() 6-82
reqOpenOrders() 5-74
reqRealTimeBars() 4-53
reqScannerParameters() 4-57
reqScannerSubscription() 4-57
Request All Open Orders 5-74
Request Auto Open Orders 5-74
Request Open Orders 5-74
Request Parameters button 4-56
requesting contract data 4-59
requesting executions 5-77
requesting historical data 4-49
requesting market data 4-38, 4-39
requesting market depth 4-46
requesting market scanner parameters 4-56
requesting open orders 5-73
requesting real time bars 4-52
resources, for Java programming help 8-125
run() method in Example2 7-107
running Example 1 7-92
running Example 2 7-102

S
Sample dialog 4-38, 4-40

contract data fields 4-59
exercise options fields 5-69
historical data fields 4-49
market data fields 4-42
market depth fields 4-46
order fields 5-64
real time bars fields 4-52

SampleFrame.java 4-33
samples 7-87
Scanner dialog 4-55
scannerData() 4-57
scannerDataEnd() 4-57
server log levels 6-85
Server Logging button 6-84
server logging level 6-84

setServerLogLevel() 6-85
snapshot 4-45
subscribing to market scanner subscriptions 4-55
subscribing to news bulletins 6-81

T
tickEFP() 4-44
tickGeneric() 4-44

use in Example 2 7-115
tickOptionComputation() 4-44
tickPrice() 4-44
tickSize() 4-44
tickString() 4-44
Trader Workstation

overview 2-14
trading window 2-15
TWS

real-time account monitoring in 2-16
TWS and the API 2-17
TWS Order Ticket 2-15
TWS overview 2-14, 2-15
TWS Quote Monitor 2-15

U
underlying data

retrieving in Example 2 7-110
updateMktDepth() 4-48
updateMktDepthL2() 4-48
updateNewsBulletin() 6-82
updateNewsBulletin() parameters 6-82
using this book 1-8

document conventions 1-11
icons 1-10
organization 1-8

V
viewing the server logging level 6-84

W
What If button 5-67
what-if data 5-67
whatIf() parameter 5-67
Getting Started with the TWS Java API 137

	Introduction
	How to Use this Book
	Organization
	Part 1: Introducing the TWS Java API
	Part 2: Preparing to Use the TWS Java API
	Part 3: Getting to Know the Java Test Client
	Part 4: Java Samples
	Part 5: Where to Go from Here

	Footnotes and References
	Icons
	Document Conventions

	TWS and the Java API
	Chapter 1 - What is Trader Workstation?
	What Can You Do with TWS?
	A Quick Look at TWS
	The TWS Quote Monitor
	The Order Ticket
	Real-Time Account Monitoring

	Chapter 2 - Why Use the TWS Java API?
	TWS and the API
	Available API Technologies
	An Example

	Preparing to Use the Java API
	Chapter 3 - Download the Java JDK and IDE
	Chapter 4- Download the API Software
	Chapter 5 - Connect to the Java Test Client

	Market Data
	Chapter 6 - Connect the Java Test Client to TWS
	Java Test Client Basic Framework
	SampleFrame.java

	What Happens When I Click the Connect Button?
	Disconnecting from a Running Instance of TWS

	Chapter 7: Requesting and Canceling Market Data
	What Happens When I Click the Req Mkt Data Button?
	The Sample Dialog
	The reqMktData() Method
	EWrapper Methods that Return Market Data

	Getting a Snapshot of Market Data
	Canceling Market Data

	Chapter 8 - Requesting and Canceling Market Depth
	What Happens When I Click the Req Mkt Depth Button?
	The reqMktDepth() Method
	The updateMktDepth() and updateMktDepthL2() Methods

	Canceling Market Depth

	Chapter 9 - Requesting and Canceling Historical Data
	What Happens When I Click the Historical Data Button?
	The reqHistoricalData() Method
	The historicalData() Method

	Canceling Historical Data

	Chapter 10 - Requesting and Canceling Real Time Bars
	What Happens When I Click the Req Real Time Bars Button?
	The reqRealTimeBars() Method
	The realtimeBar() Method

	Canceling Real Time Bars

	Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions
	What Happens When I Click the Market Scanner Button?
	The reqScannerParameters() and reqScannerSubscription() Methods
	The scannerData() Method
	The scannerDataEnd() Method

	Cancel a Market Scanner Subscription

	Chapter 12: Requesting Contract Data
	What Happens When I Click the Req Contract Data Button?
	The reqContractDetails() Method
	The contractDetails() Method

	Orders and Executions
	Chapter 13: Placing and Canceling an Order
	What Happens When I Place an Order?
	The placeOrder() Method
	The orderStatus() Method

	Canceling an Order
	Modifying an Order
	Requesting "What-If" Data before You Place an Order

	Chapter 14: Exercising Options
	What Happens When I Click the Exercise Options Button?
	The exerciseOptions() Method

	Chapter 15: Extended Order Attributes
	What Happens When I Click the Extended Button?

	Chapter 16: Requesting Open Orders
	Running Multiple API Sessions
	The Difference between the Three Request Open Orders Buttons
	What Happens When I Click the Req Open Orders Button?
	The reqOpenOrders() Method

	What Happens When I Click the Req All Open Orders Button?
	The reqAllOpenOrders() Method

	What Happens When I Click the Req Auto Open Orders Button?
	The reqAutoOpenOrders() Method

	Chapter 17 Requesting Executions
	What Happens When I Click the Req Executions Button?
	The reqExecutions() Method
	The execDetails() Method

	Additional Tasks
	Chapter 18 - Requesting the Current Time
	What Happens When I Click the Req Current Time Button?

	Chapter 19: Subscribing to News Bulletins
	What Happens When I Click the Req News Bulletins Button?
	The reqNewsBulletins() method
	The updateNewsBulletin() Method

	Canceling News Bulletins

	Chapter 20: View and Change the Server Logging Level
	What Happens When I Click the Server Logging Button?
	The setServerLogLevel() Method

	Sample Applications for the Java API
	Chapter 21 - Downloading and Preparing the Sample Code
	Download the Samples
	What’s In the Zipped Sample File?
	Setting Up the Project in NetBeans
	A Quick Look at the New Project

	Chapter 22 - Example 1: Requesting Market Data
	Run Example 1
	What Happens When You Run Example 1?
	Looking at Example1.java
	Connecting to TWS
	Creating a Contract
	Getting a Snapshot of Market Data
	The while Loop
	Getting the Last Price
	Disconnecting from TWS
	The build.xml Build File

	Chapter 23 - Example 2: Automating Option Orders
	Run Example 2
	What Happens When You Run Example 2?
	Looking at Example2.java
	Connecting to TWS
	Retrieving the Underlying Data
	Creating a Contract
	Requesting Market Data
	The while Loop
	Getting the Last Price, Option Implied Volatility and Historical Volatility

	Retrieving Options Contracts
	contractDetails() and contractDetailsEnd()

	Placing the Straddle Order
	Disconnecting from TWS
	The build.xml Build File

	Where to Go from Here
	Chapter 24 - Linking to TWS using the TWS Java API
	Chapter 25 - Additional Resources
	Help with Java Programming
	Help with the Java API
	The API Reference Guide
	The API Beta and API Production Release Notes
	The TWS API Webinars
	API Customer Forums
	IB Customer Service
	IB Features Poll

	Appendix A - Extended Order Attributes
	Appendix B - Account Page Values

